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PREFACE 

One criterion for classifying books is whether they are written for a single purpose or 
for multiple purposes. This book belongs to the category of multipurpose books, but 
one of its roles is predominant-it is primarily a textbook. As such, it can be used for a 
variety of courses at the first-year graduate or upper-division undergraduate level. A 
common characteristic of these courses is that they cover fundamental systems 
concepts, major categories of systems problems, and some selected methods for 
dealing with these problems at a rather general level. 

A unique feature of the book is that the concepts, problems, and methods are 
introduced in the context of an architectural formulation of an expert system
referred to as the general systems problem solver or GSPS-whose aim is to provide 
users of all kinds with computer-based systems knowledge and methodology. The 
GSPS architecture, which is developed throughout the book, facilitates a framework 
that is conducive to a coherent, comprehensive, and pragmatic coverage of systems 
fundamentals--concepts, problems, and methods. 

A course that covers systems fundamentals is now offered not only in systems 
~cience, information science, or systems engineering programs, but in many programs 
in other disciplines as well. Although the level of coverage for systems science or 
engineering students is surely different from that used for students in other disciplines, 
this book is designed to serve both of these needs. 

A course in systems science or engineering programs would normally cover the 
whole text, including the various appendices. This material will provide the students 
with a broad base for further studies. When equipped with such a base, the student will 
maintain an overall perspective during his studies of more advanced and specialized 
topics. He will be able to recognize the role of each topic within the overall GSPS 
architecture, to see from this larger perspective how the various topics are inter
related, and to use this knowledge in developing a meaningful program of study for 
himself. 

When used in a course offered to students in the various traditional disciplines, 
some parts of the text need not be covered. Specific passages which can be skipped 
without jeopardizing the intelligibility of subsequent parts of the book are marked by 
symbols ~ and .... at the beginning and end, respectively. They include some instances 
of a mathematical presentation of material that for general understanding is 
adequately covered at the conceptual level and sufficiently illustrated by examples. 
Also marked are passages in which a specific methodological alternative is described 
that is not essential for a general comprehension of systems fundamentals. Depending 
on the course objectives (or study objectives of an individual reader), the marked 

vii 
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passages can be either totally excluded from study, or only omitted during a 
preliminary reading of the book. 

In addition to its primary function as a text, the book is also intended for 
practicing scientists and professionals in various subject areas. An increasing number 
of them are becoming interested in learning about modern developments in systems 
science, which may be utilized in their own work. The book is obviously of particular 
significance to those specialists who are involved in multidisciplinary team projects. 

It is also expected that the book will serve as a useful reference for researchers as 
well as practitioners in systems science and related fields on one side, and the area of 
expert systems on the other side. Systems science researchers will find in the book a rich 
source of underdeveloped research areas. Practitioners, on the other hand, will find in 
it some general methodological tools of considerably broad applicability. 

While most expert systems described in the literature are designed to provide the 
user with expertise in a traditional discipline (such as a specific subject area of medicine, 
geology, chemistry, or law), the role of the GSPS is to assist the user in dealing with 
systems problems. Its expertise is thus systems knowledge and methodology and, 
consequently, its utility transcends boundaries between the traditional disciplines. In 
this sense, the book should be a useful reference for designers of expert systems and, in 
fact, also for computer systems architects-it is the computer architecture that ought 
to reflect the underlying systems problem-solving architecture and not the other way 
around. 

Prerequisite dependencies between individual chapters and sections of this book 
are well defined and are expressed by the diagram in Figure P.I. Since they do not form 
a linear ordering, there are several alternative ways of studying the material. Chapter I, 
which represents an overall introduction, must always be read first. Chapters 2-5 form 
a core of the book and are dependent on each other as shown in the diagram. All 
fundamental types of systems and key categories of systems problems are introduced in 
these chapters. One way of studying the material is to read all these core chapters 
before proceeding to the remaining chapters. Another alternative is to follow the 
prerequisite dependencies and proceed to relevant sections in Chapter 7 (Goal
Oriented Systems) and Chapter 8 (Systems Similarity) after completing the study of 
each of the core chapters. Chapter 6, which is devoted to systems complexity, can be 
read in virtually any order. The last chapter, Chapter 9, which overviews the whole 
GSPS, should also be the last one read. 

Mathematical prerequisites are restricted to the material covered normally in a 
one-semester course in finite mathematics. Some knowledge of calculus is useful, but it 
is not necessary. Special mathematical concepts, such as the concepts of the Shannon 
entropy, fuzzy measure, or metric distance, are introduced in the book before they are 
used. For a quick reference, lists of relevant mathematical symbols and a glossary of all 
mathematical terms employed in the book are given in Appendices A and B, 
respecti vel y. 

In order to minimize interruptions in the main text, almost all bibliographical, 
historical, terminological, and other remarks are included in the Notes that 



www.manaraa.com

PREFACE ix 

~--------------~!~~----~ 
Figure P. I. Prerequisite dependencies of this book. 

accompany individual chapters. They are placed at the end of each chapter, numbered, 
and occasionally referred to in the main text. 

One additional feature of this book should be mentioned. Each of its chapters and 
sections is introduced by a quote that depicts the essence of the material covered in it. 
The aim of these carefully selected quotes is to appeal to the right hemisphere of the 
readers's brain to communicate the key ideas advanced in this book. I expect that in 
some instances the quotes will help the reader to understand the material presented 
under it, while in other instances the studied material will help him to properly 
understand and appreciate the quote. In any case, I am confident that the quotes will 
reinforce the learning process and will make it a little more enjoyable. 

GEORGE J. KLIR 
Binghamton, New York 
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NOTE TO THE READER 

Passages that are set off by symbols ~ and... at the beginning and at the end, 
respectively, can be omitted without jeopardizing the intelligibility of the remaining 
text. 

References to literature are denoted by brackets and contain the first two letters of 
the author's last name and the reference number. For instance, [ASl] means the first 
reference to Ashby found in the References at the end of the book. 

When confused with mathematical notation, the reader should consult the List of 
Symbols in Appendix A. When uncertain about the meaning of a mathematical term, 
he should consult the Glossary of Relevant Mathematical Concepts in Appendix B. 
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1 

INTRODUCTION 

If one does not begin with a right attitude, there is little hope for a right ending. 
-KUNG Fu MEDITATION 
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1.1. SYSTEMS SCIENCE 

We must stop acting as though nature were organized into disciplines in the same 
way that universities are. 

-RUSSELL L. ACKOFF 

The evolution of a highly complex hierarchy of disciplinary specializations has been 
one of the major characteristics of the history of science. The ancient scientist/philos
opher such as Aristotle, who was able to comprehend almost all knowledge available in 
his time, has gradually been replaced by generations of scientists with ever increasing 
depth of knowledge and narrowness of interest and competence. 

Limitations of the human mind seem to be the primary reason for this trend of 
fragmenting science into narrow specializations. Once the amount of knowledge 
becomes greater than what the human mind is able to comprehend, any increase in the 
knowledge necessarily means that the human comprehends a smaller fraction of it. The 
more in-depth this knowledge is, the narrower it must be. 

The evolution of disciplinary specialization is not unique to science. Other areas of 
human endeavor, such as engineering, medicine, humanitites, or the arts, have been 
going through a similar evolution. Engineering, for instance, has evolved from one 
discipline (the classical civil engineering) into a spectrum of engineering branches, such 
as mechanical, electrical, chemical, or nuclear engineering, each of them being further 
divided into many specializations. 

One of the major characteristics of science in the second half of this century is the 
emergence of a number of related intellectual areas such as cybernetics, general systems 
research, information theory, control theory, mathematical systems theory, decision 
theory, operations research, and artificial intelligence. All those areas, whose 
appearance and development are strongly correlated with the origins and advances of 
computer technology, have one thing in common: they deal with such systems 
problems in which informational, relational, or structural aspects predominate, 
whereas the kind of entities which form the system is considerably less significant. It 
has increasingly been recognized that it is useful to view these interrelated intellectual 
developments as parts of a larger field of inquiry, usually referred to as systems science. 

If systems science is a science in the usual sense, then three basic components 
should be distinguished in it: 

3 
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1. a domain of inquiry, 
ii. a body of knowledge regarding the domain, 

iii. a methodology (a coherent collection of methods) for the acquisition of new 
knowledge within the domain as well as utilization of the knowledge for 
dealing with problems relevant to the domain. 

It is the purpose of this introductory section to characterize these three components
the domain, knowledge, and methodology-of systems science. Moreover, it is argued 
that systems science is not directly comparable with the other sciences; that, instead, it 
is more appropriate to view it as a new dimension in science. 

It is fair to say that the domain of each scientific discipline is a particular class of 
systems. Indeed, the term "system" is unquestionably one of the most widely used 
terms in describing activities in the various disciplines of science, particularly in recent 
times. It has become, unfortunately, a highly overworked term which enjoys different 
meanings under different circumstances and for different people. 

Looking up the term "system" in a standard dictionary, one is likely to find that it 
is defined as "a set or arrangement of things so related or connected as to form a unity or 
organic whole" (Webster's New World Dictionary), although different dictionaries may 
contain stylistic variations of this formulation. 

To follow the common definition, the term "system" stands, in general, for a set of 
some things and a relation among the things. The term "relation" is used here in a 
broad sense to encompass the whole set of kindred terms such as "constraint," 
"structure," "information," "organization," "cohesion," "interaction," "coupling," 
"linkage," "interconnection," "dependence," "correlation," "pattern," and the like. 
A system, say system S, is thus an ordered pair S = (A, R), where A denotes a set of 
relevant things and R denotes a relation among the things in set A. Such a conception 
of a system is too general and, consequently, of little pragmatic value. To make it 
pragmatically useful, it has to be refined in the sense that specific classes of ordered 
pairs (A, R), relevant to recognized problems, must be introduced. Such classes can 
basically be introduced by one of two fundamentally different criteria: 

a. by a restriction to systems which are based on certain kinds of things; 
b. by a restriction to systems which are based on certain kinds of relations. 

Classification criteria (a) and (b) can be viewed as orthogonal. Criterion (a) is 
exemplified by the traditional classification of science and technology into disciplines 
and specializations, each focusing on the study of certain kinds of things (physical, 
chemical, biological, political, economical, etc.) without committing to any particular 
kind of relations. Since different kinds of things require different experimental 
(instrumentation) procedures for data acquisition, this classification is essentially 
experimentally based. 

Criterion (b) leads to fundamentally different classes of systems, each characterized 
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by a specific kind of relations with no commitment to any particular kind of things 
on which the relations are defined. This classification is related primarily to data 
processing rather than data acquisition and, as such, it is predominantly theoretically 
based. 

As discussed later in more detail, the largest classes of systems based on criterion 
(b) are those which characterize various epistemological levels, i.e., levels of knowledge 
regarding the phenomena under consideration. They are further refined by various 
methodological distinctions. Each class of systems defined by a particular epi
stemological level and specific methodological distinctions is then divided into still 
smaller classes. Each of these classes consists of systems that are equivalent with regard 
to some specific, pragmatically relevant aspects of their relations. Such equivalence is 
usually called isomorphism and classes based on it are called isomorphic classes. 

Depending on the relational aspects in which systems are required to be 
isomorphic, some isomorphic classes are subsets of others. The smallest isomorphic 
classes are obviously those in which systems are isomorphic with respect to all aspects 
of their relations. 

Although systems in each particular isomorphic class are equivalent in at least 
some aspects of their relations, they may be based on completely different kinds of 
things. To deal solely with relational aspects of systems, it is sufficient to replace each 
isomorphic class of systems by a single system chosen as its representative. Although 
the choice of these representatives is arbitrary, in principle, it is important that the 
same selection criteria be used for all isomorphic classes. Otherwise, the representatives 
would not be compatible and, consequently, it would be methodologically rather 
difficult to deal with them. For our purpose, let the representatives be defined as 
systems whose sets of things are some comparable abstract (interpretation-free) sets 
and whose relations are described in some convenient standard form. 

Let representatives of isomorphic classes that satisfy these characteristics, under 
some specific meaning given to the term "standard," be called general systems. Hence, 
a general system is a standard and interpretation-Jree system chosen to represent a class 
of systems equivalent (isomorphic) with respect to some relational aspects that are 
pragmatically relevant. The term "standard" is used in this definition to refer to a 
description which satisfies certain conventions, influenced primarily by the use of the 
system; some convenient form by which the system is represented on a computer, for 
example, may be accepted as a standard description. 

The orthogonality of classification criteria (a) and (b) is illustrated by Figure 1.1. 
Classes of systems based on the kind of things involved (set A) are characterized by the 
vertical strips; classes of systems based on relations involved (set R) are characterized 
by the horizontal strips. 

While systems classification based on criterion (b) is foreign to traditional science, 
its significance has increasingly been recognized. All activities involved in the study of 
those properties of systems and relevant problems which emanate from this 
classification are now becoming identified with the general name "systems science." In 
this sense, "systems science" is a name for scientific activities which are predominantly 
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theoretically based and, hence, complementary to the experimentally based activities 
of the traditional science. 

The domain of systems science consists thus of all kinds of relational properties 
which are valid for particular classes of systems, or, in some rare instances, are valid for 
all systems. The chosen relational classification of systems determines the way in which 
the domain of systems is divided into subdomains, in a similar fashion as the domain of 
the traditional science has been divided into subdomains of the various disciplines and 
specializations. 

The knowledge of systems science, i.e., knowledge regarding the various classes of 
relational properties of systems, can be obtained either mathematically or through 
experiments with systems simulated on a computer. Examples of mathematically 
derived knowledge in systems science are the Ashby law of requisite variety [AS2, 
AS3], the principles of maximum entropy and minimum cross-entropy [CH5, JA2], or 
the various laws of information which govern systems [C04]. As far as the 
experimentally derived knowledge is concerned, it is the computer which represents the 
laboratory for systems science. It allows the systems scientist to perform experiments in 
exactly the same way other scientists do in their laboratories, although the experimen
tal entities he deals with are abstract structural properties (simulated on the computer) 
rather than specific properties of the real world. Some instances of systems knowledge 
obtained by computer experimentation are described later in this book. 

The third component of systems science-systems methodology-is a coherent 
collection of methods for studying relational properties of various classes of systems 
and for solving systems problems, i.e., problems which deal with the relational aspects 
of systems. A useful classification of systems from the relational point of view is the 
kernel of systems methodology. When properly developed, the classification is a basis 
for a comprehensive description and taxonomy of systems problems. The ultimate goal 
of systems methodology is to provide potential users in various disciplines and 
problem areas with methodological tools for all the recognized types of systems 
problems. 

From the standpoint of the disciplinary classification of traditional science, 
systems science is clearly cross-disciplinary. There are at least two implications of this 
fact. Firstly, systems science knowledge and methodology are directly applicable, at 
least in principle, in virtually all disciplines of traditional science. Secondly, systems 
science has the flexibility to study relational properties of such systems and the 
associated problems which include aspects derived from any number of different 
disciplines and specializations of traditional science. Such cross-disciplinary systems 
and problems can thus be studied as wholes rather than collections of the disciplinary 
subsystems and subproblems. 

It follows from the previous discussion that systems science, like any other science, 
has a specific domain of inquiry, body of knowledge, and methodology. And yet, it is 
not a science in the traditional sense. While the traditional science is oriented to the 
study of various categories of phenomena, systems science is oriented to the study of 
various classes of relations. As such, it should be viewed as a new dimension in science 
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rather than a new science comparable with the other sciences. 
The two dimensions of science, which reflect the two-dimensional classification of 

systems symbolized by Figure 1.1, are complementary. When combined in scientific 
inquiries, they are more powerful than either of them alone. The traditional dimension 
of science provides a meaning and context to each inquiry. The systems dimension, on 
the other hand, provides a means for dealing with any desirable system, regardless of 
whether or not it is restricted to a traditional discipline of science. 

It seems that three major periods in human history can naturally be recognized 
with regard to the character of science: 

i. prescientific period (until about the sixteenth century)-<:haracterized by 
common sense, speculation, the method of trial and error, craft skills, 
deductive reasoning, and the emphasis on tradition; 

11. one-dimensional science (the period from the seventeenth century until about 
the middle of this century)-<:haracterized by the integration of speculation, 
deductive reasoning, and experimentation, with a particular emphasis on the 
latter, which gives rise to the various experimentally based disciplines and 
specializations of science; they emerge primarily due to differences in 
experimental (instrumentation) procedures rather than differences in the 
relational properties of the investigated systems; 

iii. two-dimensional science (developing since about the middle of this century}
characterized by the emergence of systems science, which focuses on the 
relational rather than experimental aspects of the investigated systems, and its 
integration with the experimentally based (traditional) disciplines of science. 

In summary, it is reasonable to characterize the development of science during the 
second half of this century in terms of a major transition from a one-dimensional 
science-primarily experimentally based-into a two-dimensional science, in the 
course of which systems science-primarily relationally based-gradually enters as the 
second dimension. The significance of this radically new paradigm of science-the two
dimensional science-has not been fully realized as yet, but its implications for the 
future seem to be. quite profound. 

1.2. SYSTEMS PROBLEM SOLVING 

Only by means of a full understanding of the tasks may we find means relevant to 
their solution. It is more important for the result to put correct questions than to 
give correct answers to wrong questions. 

CHRISTIAN NORBERG-SCHULZ 

The notion of systems problem solving, as a central theme of this book, raises 
three questions regarding its meaning and significance: 
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1. Can systems problems be recognized as instances of a special and well-defined 
class of general problems? 

2. Can the class of systems problems be operationally described to make it 
possible to develop a comprehensive methodology for solving problems in this 
class? 

3. Is the class of systems problems of sufficient practical significance to warrant 
the development of a systems problem-solving methodology? 

In my opinion, the answers to these questions are positive. Although the rationale 
of this opinion can be fully comprehended only after reading this book, let me offer the 
following remarks as a brief preview. 

As argued in Section 1.1, the concept of general systems, as standard representa
tives of pragmatically significant equivalence classes of systems, emerges naturally from 
the two-dimensional classification of systems illustrated by Figure 1.1. Although it is 
quite clear that general systems enjoy infinite variety, this variety can be adequately 
captured by a finite number of types of general systems, each characterized by a 
particular epistemological level and a finite set of relevant and desirable meth
odological distinctions. 

Once desirable types of general systems are defined, they form a space within 
which types of systems problems can be defined. Such a space is usually called a 
problem space. Each problem type is defined in terms of an ordered connection in the 
problem space, from some initial systems type to a terminal systems type, and a set of 
requirement types that are compatible with the two systems types involved. 

Requirements can be objectives or constraints of particular problems. Although 
the variety of actual requirements applicable to any nonempty problem space is 
infinite, it can be adequately represented by a finite number of types, as already 
indicated in the previous paragraph. Each of the problem types is thus character
ized by the two types of systems involved and a finite set of specified requirement 
types. 

A problem type becomes a particular problem when particular requirements of all 
specified types are given and, depending on the requirement types, either only a 
particular initial system of the specified type is given or particular systems are given for 
both of the specified types. In the former case, the initial system represents the initial 
problem situation; the problem solution (or goal problem situation) consists of one or 
more particular terminal systems of the required type. In the latter case, the initial 
problem situation is represented by two particular systems and the solution is some 
relationship between them. 

It follows from this characterization of systems problems that, indeed, systems 
problems form a special and well-defined class of general problems. The fact that their 
infinite variety is reducible into a finite number of well-defined problem types makes it 
certainly possible to develop a methodology for this class of problems. Hence, the 
answers to our first and second questions are clearly positive. The third question needs 
some additional discussion. 

Systems problem solving, as conceptualized in this book, is restricted to problems 
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in which problem situations are represented by general systems of well-defined types. 
As such, it is concerned solely with those aspects of overall problems that are 
interpretation free and context independent. The use of systems problem-solving 
methodology is thus based on the assumption that interpretation-free and context
independent subproblems can be extracted from the individual overall problems. 

Is it meaningful and useful to divide overall problems in this way? I would like to 
argue that it is. Indeed, we all employ this division in solving simple everyday 
problems when we use arithmetic, for example. Bernard Zeigler expresses this point 
quite well in the Preface to his book Theory of Modelling and Simulation [ZE2]: 

Nobody questions the role of arithmetic in the sciences, engineering, and 
management. Arithmetic is all pervasive, yet it is a mathematical discipline having 
its own axioms and logical structure. Its content is not specific to any other 
disciplines but is directly applicable to them all. Thus students of biology and 
engineering are not taught how to add differently-the different training comes in 
what to add, when to do it, and why. 

The practice of modelling and simulation too is all pervasive. However it has its 
own concepts of model description, simplification, validation, simulation, and 
exploration, which are not specific to any particular discipline. These statements 
would be agreed to by all. Not everyone, however, would say that the concepts 
named can be isolated and abstracted in a generally useful form. 

Although Zeigler emphasizes modelling and simulation, his observations are 
applicable equally well to other classes of problems such as systems design, analysis, 
identification, reconstruction, control, performance evaluation, testing, etc. 
Sophisticated methodological tools can be developed for many subproblems of these 
various overall problems in terms of the relevant general systems, i.e., without regard 
to any interpretation or context. Such tools introduce great efficiency and unification 
into the methodological process of solving complex problems, in the same way as 
arithmetic does for very simple problems. 

Let a conceptual framework through which types of systems problems are defined 
together with methodological tools for solving problems of these types be called a 
general systems problem solver (or GSPS, in abbreviation). 

In different problem-solving contexts associated with the various traditional 
disciplines of science, engineering, medicine, and other areas, as well as cross
disciplinary studies, the GSPS should be primarily viewed as a methodological 
resource, presumably computer based. When available, its service can be utilized 
whenever systems problems arise in the process of dealing with some overall problem. 

Figure 1.2 illustrates the role of the GSPS as an aid to scientific investigation in 
different disciplines of science. Two levels are distinguished in its operation: 

1 (Represented by the inner rectangles). The investigator is familiar enough with 
the basic language of the GSPS to be able to formulate an interpretation of a systems 
problem within his own discipline. In this case the investigator, or user, maps the 
interpretation to GSPS formulation (as described later); GSPS solves the problem and 
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maps the solution to the interpreted system. This situation can also arise through the 
development of procedures in the form of simple questions put to the user, the answers 
to which identify the systems problem applicable to the situation. 

2 (Outer rectangles). Many systems investigations are of sufficient complexity 
that the investigator could make meaningful use of more information than that 
provided by the solution to a particular systems problem. In this case, also, procedures 
can be developed through which a transformation from interpreted system to general 
system can be effected. Based on the information supplied through this transform
ation, GSPS can translate new information about the general system back to the 
interpreted system. The investigator is thus given new knowledge about the interpreted 
system. 

The utilization of the GSPS, or similar developments in systems science, for the 
study of particular systems requires thus an interface with the disciplines involved. 
Such an interface consists of two dual and alternately used processes-abstraction and 
interpretation. In a scientific investigation, the application of these processes has, 
generally, an on-going and nonterminating character. This vital characteristic of 
science is well depicted by G. Spencer Brown [BR9]: 
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Science is a continuous living process; it is made up of activities rather than records; 
and if the activities cease it dies. Science differs from mere records in much the same 
way as a teacher differs from a library .... Scientific knowledge, like negative 
entropy, tends constantly to diminish. It is prevented from dwindling completely 
into anecdote only by the attitude which seeks to repeat experiments and confirm 
results without end .... Science is a significant game: one player tries to reduce 
significance to insignificance by asking more questions, while another seeks to 
counter his activities by doing more experiments. The scientist, like the chess
enthusiast, often plays both sides himself .... Repetitions of scientific results serve 
two purposes. First, they inhibit alternative questions which would tend to reduce 
their significance; and secondly, each successful repetition tends to increase the 
significance which such question might reduce. We thus have a race between the 
questions and the results. 

The scheme in Figure 1.2 is not restricted to science. It is applicable equally well to 
other areas such as engineering, medicine or management. Although problems in these 
areas (e.g., systems design, testing, diagnosis, decision making, etc.) are different from 
the problems involved in scientific inquiry, the role of the GSPS in assisting the various 
users to deal with their systems subproblems is essentially the same. 

Systems problem solving, as represented by the GSPS, is thus applicable only in 
combination with the traditional disciplines of science and other areas, within which 
overall problems arise in specific contexts. To be practically useful, the GSPS must 
cover as large a class of systems problems as possible, particularly those systems 
problems that are common to many disciplines. Hence, the GSPS conceptual 
framework should be derived by a process of abstracting and organizing systems 
conceptions and problems from as many disciplines as possible and supplementing 
them, wherever desirable, with new conceptions and problems to form a coherent 
whole. The GSPS framework that is described in this book has actually been developed 
in this way over a period of almost 20 years. 

The current version of the GSPS, as well as any of its future versions, should be 
viewed as provisional. Given a particular framework, it is always likely that sooner or 
later, some new systems concepts and problems will be discovered in the process of 
using the GSPS that have no meaning within the framework. While some of them 
might be too specialized and limited in applications, others may be of sufficiently broad 
applicability to warrant their integration into the framework and a development of 
associated methods. The GSPS is thus evolving through its interactions with users and 
its scope of applicability steadily increases during this evolutionary process. From this 
point of view, the GSPS may be also viewed as an ongoing research program. 

From the remarks made in this section, we may now conclude that systems 
problems are meaningful subproblems of overall problems that arise in the various 
traditional disciplines of science and other areas of human endeavor, that these 
subproblems can be operationally described, and that their methodology is an 
important resource for the traditional disciplines as well as for dealing with cross
disciplinary problems. 
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1.3. HIERARCHY OF EPISTEMOLOGICAL LEVELS OF SYSTEMS 

Epistemology. or the theory of knowledge. is that branch of philosophy which is 
concerned with the nature and scope of knowledge, its presuppositions and basis. 
and the general reliability of claims to knowledge. 

-THE ENCYCLOPEDIA OF PHILOSOPHY 

13 

The skeleton of the GSPS taxonomy of systems is a hierarchy of epistemological 
levels of systems. It seems that such hierarchy is vital, in one form or another, to the 
development of any organized package of methodological tools for systems problem 
solving. Although the individual epistemological levels of systems are described in 
great detail in Chapters 2-5, a simple characterization of the whole hierarchy is 
presented in this section as a preview. 

The hierarchy is derived from some primitive notions: an investigator (observer) 
and his environment, an investigated (observed) object and its environment; and an 
interaction between the investigator and object. 

At the lowest level in the hierarchy, denoted as level 0, a system is what is 
distinguished as a system by the investigator. That is to say, the investigator makes a 
choice regarding the manner in which he wants to interact with the investigated object. 
His choice is not completely arbitrary in most instances; it is at least partially 
determined by the purpose of his investigation, investigative constraints (availability of 
measuring instruments, financial and time limitations, legal restrictions, etc.), and 
available knowledge relevant to the investigation. The following quote from a recent 
paper by Brian Gaines is an engaging discussion of this very general notion of the term 
"system" [GA4]: 

Definition: A system is what is distinguished as a system. At first sight this looks 
to be a nonstatement. Systems are whatever we like to distinguish as systems. Has 
anything been said? Is there any possible foundation here for a systems science? I 
want to answer both these questions affirmatively and show that this definition is 
full of content and rich in its interpretation. 

Let me first answer one obvious objection to the definition above and turn it to 
my advantage. You may ask, "What is peculiarly systemic about this definition"? 
"Could I not equally well apply it to all other objects I might wish to define?" i.e., A 
rabbit is what is distinguished as a rabbit. "Ah, but," I shall reply, "my definition is 
adequate to define a system but yours is not adequate to define a rabbit." In this lies 
the essence of systems theory: that to distinguish some entity as being a system is a 
necessary and sufficient criterion for its being a system, and this is uniquely true for 
systems. Whereas to distinguish some entity as being anything else is a necessary 
criterion to its being that something but not a sufficient one. 

More poetically we may say that the concept of a system stands at the 
supremum ofthe hierarchy of being. That sounds like a very important place to be. 
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Perhaps it is. But when we realize that getting there is achieved through the rather 
negative virtue of not having any further distinguishing characteristics, then it is not 
so impressive a qualification. I believe this definition of a system as being that which 
uniquely is defined by making a distinction explains many of the virtues, and the 
vices, of systems theory. The power of the concept is its sheer generality; and we 
emphasize this naked lack of qualification in the term general systems theory, rather 
than attempt to obfuscate the matter by giving it some respectable covering term 
such as mathematical systems theory. The weakness, and paradoxically the prime 
strength of the concept is in its failure to require further distinctions. It is a weakness 
when we fail to recognize the significance of those further distinctions to the subject 
matter in hand. It is a strength when those further distinctions are themselves 
unnecessary to the argument and only serve to obscure a general truth through a 
covering of specialist extremes of vilification and praise. 

The form of the interaction with the object can be described in a number of 
alternative ways. In the GSPS framework, a system at the epistemological level 0 is 
defined by a set of variables, a set of potential states (values) recognized for each 
variable, and some operational way of describing the meaning of their states in terms of 
the manifestations of the associated attributes of the object. The term "source system" 
has been used for systems defined at this level to indicate that such a system is, at least 
potentially, a source of empirical data. Other names used in the literature are 
"primitive system" and "dataless system," which suggest that a system at this level 
represents a primitive stage in the process of systems investigation with no data 
regarding the variables available. 

The set of variables is usually partitioned into two subsets, referred to as basic and 
supporting variables. Aggregate states of all supporting variables form a support set 
(also called a parameter set), within which changes in states of the individual basic 
variables occur. The most frequent examples of supporting variables are time, space, 
and various populations of individuals of the same kind (social groups, sets of 
countries, manufactured products of the same kind, etc.). 

Source systems can usefully be classified by various criteria through which 
methodologically significant special properties of the variables or state sets are 
distinguished. According to one such criterion, the basic variables may be partitioned 
into input and output variables. Under such a partition, states of input variables are 
viewed as conditions which affect the output variables. Input variables are not the 
subject of inquiry but are viewed as being determined by some agent which is not part 
of the system under consideration. Such an agent is referred to as an environment of the 
system; it includes, in many cases, the investigator. It is important that the notion of 
input variables not be confused with the notion of independent variables. 

Systems whose variables are classified into input and output variables are called 
directed systems; those for which no such classification is given are called neutral 
systems. A number of additional distinctions are recognized for state sets associated 
with the involved variables (basic or supporting) and provide a basis for further 
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methodological classification of source systems. They include, for instance, the 
distinctions between crisp and fuzzy variables, discrete and continuous variables, and 
variables of different scales. 

Systems at different higher epistemological levels are distinguished from each 
other by the level of knowledge regarding the variables ofthe associated source system. 
A higher-level system entails all knowledge of the corresponding systems at any lower 
level and contains some additional knowledge which is not available at the lower levels. 
Hence, the source system is included in all of the higher-level systems. 

When the source system is supplemented by data, i.e., by actual states of the basic 
variables within the defined support set, we view the-new system (a source system with 
data) as a system defined at epistemological level 1. Systems at this level are called data 
systems. Depending on the problem, data may be obtained by observation or 
measurement (as in the problem of systems modelling) or are defined as desirable states 
(as in the problem of systems design). 

Higher epistemological levels involve knowledge of some support-invariant 
relational characteristics of the variables involved through which the data can be 
generated for appropriate initial or boundary conditions. The data generation may be 
exact (deterministic) or approximate in some specific fashion (stochastic, fuzzy). 

At level 2, the support invariance is represented by one overall characterization of 
the constraint among a set of basic variables within the support set. The set of basic 
variables includes those defined by the associated source system and, possibly, some 
additional basic variables. Each of the additional variables is defined in terms of a 
specific translation rule in the support set, applied either to a basic variable ofthe source 
system or to a hypothetical (unobserved) variable, introduced by the user (modeler, 
designer) and usually referred to as an internal variable. Each translation rule is 
basically a one-to-one function by which each element of the support set is assigned 
another (unique) element of the same support set. 

Since the aim of the support-invariant constraint characterization is to describe a 
process by which states of the basic variables can be generated within the support set 
for each initial or boundary condition, systems at level 2 are called generative systems. 

At epistemological level 3, the system is defined in terms of a set of generative 
systems (or, sometimes, lower-level systems), referred to as subsystems of the overall 
system. The subsystems may be coupled in the sense that they share some variables, or 
may interact in some other way. Systems at this level are called structure systems. 

At epistemological level 4, the system consists of a set of systems, defined at some 
lower levels, and some support-invariant metacharacterization (a rule, relation, 
procedure) by which changes in the lower-level systems are described; the lower-level 
systems are required to share the same source system and are defined at levels I, 2, or 3. 
Systems defined in this way are called metasystems. At level 5, the metacharacterization 
is allowed to change in the support set according to higher-level support-invariant 
characterization or meta-metacharacterization; such systems are called meta
metasystems or metasystems of the second order. Metasystems of higher orders are 
defined similarly. 
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Figure 1.3. Hierarchy of epis
temological levels of systems: a 
simplified overview. 

For easy reference, a simplified overview of the epistemological systems hierarchy 
is given in Figure 1.3. 

1.4. THE ROLE OF MATHEMATICS 

Don't mistake a solution method for a problem definition-especially if it's your 
own solution method. 

-DONALD GAUSE AND GERALD M. WEINBERG 

As discussed in Section 1.2, the notion of systems problem solving emerges 
naturally from the two-dimensional classification of systems expressed by Figure 1.1. 
Its aim is to deal with relational aspects of systems in an interpretation-free and 
context-independent fashion. This, however, is also what mathematics is supposed to 
do. What, then, is the difference between the two? 

Mathematics can roughly be divided into pure and applied. Pure mathematics is 
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basically oriented to the development of various axiomatic theories, regardless of 
whether or not they have any real world meaning. The proper activity of the pure 
mathematician is thus to derive theorems from postulated assumptions (axioms), and 
it is not his concern to determine whether there is some interpretation of the theory in 
which the assumptions are true. This "I'art pour J'art" attitude, which has been 
increasingly influencial in mathematics since the nineteenth century, is even empha
sized by some mathematicians as crucial for mathematics. In spite of this attitude, 
however, many mathematical theories have various degrees of relevance to the real 
world. It may be a lucky accident for a mathematical theory when any such relevance is 
discovered. More frequently, however, it seems to be a result of either some 
unconscious process in the mind of the mathematician (intuition, insight) or his 
conscious effort (often hidden or at least unreported) to abstract and formalize some 
aspects of reality. 

It should be mentioned at this point that there are some inherent limitations in the 
axiomatic formalization. It was discovered by Kurt G6del in 1931 that some axiomatic 
theories (e.g., any axiomatic theory of ordinary arithmetic) are such that their internal 
consistency (i.e., that no mutually contradictory theorems can be deduced from the 
axioms) cannot be proven. More precisely, the consistency of an axiomatic theory 
cannot be proven within its own rules of inference. A consistency proof based on more 
powerful rules of inference may exist but, then, the consistency of the assumptions in 
these new rules has to be proven. This may require the use of still more powerful rules 
of inference. This argument can be repeated to show that the consistency question can 
never be fully answered for some mathematical theories. G6del also showed, and this is 
even more important, that if some of the axiomatic theories whose consistency is not 
provable were consistent, then they would not be complete (i.e., some true statements 
of the theories would not be derivable from their axioms). Hence, there are 
mathematical theories that are either inconsistent or incomplete, and it cannot be 
decided to which of the two categories each of them belongs. 

The role of applied mathematics is to search for practical interpretations of the 
various mathematical theories and, when such interpretations are found, to further 
develop the theories into useful methodological tools for dealing with the interpreted 
systems and associated problems. As such, applied mathematics is oriented to the 
development of methods based on specific mathematical theories and their use in as 
many interpreted areas as possible. It is, of course, subject to the fundamental 
limitations of mathematical theories exposed by G6del. Moreover, each mathematical 
theory is derived from some specific assumptions (axioms) and, consequently, the use 
of any methodology based on the theory is restricted to problems which conform to 
these assumptions. If a problem does not conform to them and an applied 
mathematician trained in the methodology still wants to use it, he has to adjust 
(reformulate) the problem to make it fit the assumptions. This means, however, that a 
different problem is now solved. The problem adjustment is often not stated explicitly 
and, as a consequence, an impression is created that the original problem was solved 
while, in fact, it was not. 
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Applied mathematics provides thus the various users (scientists, engineers, etc.) 
with a set of methodological tools, each derived from a mathematical theory which, in 
turn, is based on a specific set of assumptions. Mathematical theories are most 
frequently developed for assumptions that are interesting or convenient from the 
mathematical point of view. As a consequence, they produce methods which cover 
rather small and scattered parts of the whole spectrum of systems problems. In some 
sense, the idea of systems problem solving is a reaction to this unsatisfactory situation. 

In contrast with applied mathematics, systems problem solving is committed to 
the investigation of the domain of systems problems as a coherent whole. In particular, 
it attempts to identify pragmatically rich subproblems, i.e., subproblems that occur in 
as many genuine systems problems as possible. This emphasis of systems problem 
solving on comprehensiveness and pragmatic significance in pursuing methodological 
research is quite different from the usual emphasis in mathematics to pursue research 
of methodological areas based on convenient (and often arbitrary) mathematical 
properties. 

Hence, the primacy of problems in systems problem solving is in sharp contrast 
with the primacy of methods in applied mathematics. It is the most fundamental 
commitment of systems problem solving to develop methods for solving systems 
problems in their natural formulation with no simplifying assumptions imposed upon 
the solution at all or, if unavoidable, with assumptions that make the problem 
manageable but at the same time distort it as little as possible. The methodological 
tools for solving the problems are of secondary importance and are chosen in such a 
way as to best fit the problem rather than the other way around. Moreover, the tools 
need not be only mathematical in nature but may consist of a combination of 
mathematical, computational, heuristic, experimental, or any other desirable aspects. 

In order to manage the complexity involved in the solution process, systems 
problems can rarely be handled without any simplifying assumptions. However, 
simplifying assumptions can be introduced in each problem in many different ways. 
Each set of assumptions reduces, in a particular manner, the range of possible solutions 
and, at the same time, reduces the complexity of the solution process. 

Given a particular systems problem, a set of assumptions regarding its solutions is 
referred to as a methodological paradigm. When a problem is solved within a particular 
methodological paradigm, the solution does not contain any features inconsistent with 
the paradigm. 

It is reasonable to view a paradigm which represents a proper subset of 
assumptions of another paradigm as a generalization of the latter. Given the set of all 
assumptions which are considered for a problem type, the relation "paradigm A is 
more general than paradigm B" (i.e., A contains a subset ofthe assumptions contained 
in B) forms a partial ordering among all meaningful paradigms associated with the 
problem type. The term "meaningful paradigm" may be used in a strong sense to 
characterize sets of assumptions that guarantee that all particular problems of the 
given problem type are solvable; alternatively, it may be used in a weak sense to require 
only that some particular problems of the given problem type are solvable. 

The most general paradigm for each problem type is unique: it is the assumption-
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free paradigm. On the other hand, there are usually several least general paradigms 
which are meaningful for a given problem type. 

Paradigm generalization is a current trend stimulated primarily by the advances in 
computer technology. Any generalization of a paradigm extends the set of possible 
solutions to the problem and makes it possible in many cases to reach a better solution. 
At the same time, however, it usually requires a solution procedure with greater 
complexity. The study of the relationship between possible methodological paradigms 
and classes of systems problems is a subject of systems metamethodology. This is an 
important new area of research in which little has been accomplished as yet. The 
central issue of systems metamethodology is to determine those paradigms, for various 
classes of problems and the current state of computer technology, which represent the 
best compromise between the two conflicting criteria-the quality of the solution and 
the complexity of the solution procedure. The main difficulty in this investigation is 
that there are usually many alternative solution procedures which can be developed for 
a given problem under the same methodological paradigm. 

Another issue of systems metamethodology is the determination and characteriz
ation of clusters of systems paradigms that usefully complement each other and may 
thus be effectively used in parallel for dealing with the same problem. Together, they 
may give the investigator much better insight than anyone of them could provide 
alone. 

Every mathematical theory that has some meaning in terms of a systems problem
solving framework (such as that of the GSPS) is actually a methodological paradigm. 
It is associated with a problem type and represents a local frame within which methods 
can be developed for solving particular problems of this type. One of the roles of 
systems metamethodology is to compile relevant mathematical theories and identify 
their place in the overall problem space. Another of its roles is to propose new 
meaningful paradigms; the ultimate goal is to characterize and order all possible 
paradigms for each problem type. Since the recognition of a new paradigm is an 
impetus for developing a new mathematical theory, comprehensive investigations in 
systems metamethodology will undoubtedly be a tremendous stimulus for basic 
mathematical research of great pragmatic significance. Mathematics is thus a 
contributor to systems problem solving as well as a beneficiary of the latter. 

1.5. THE ROLE OF COMPUTER TECHNOLOGY 

Symbiosis has played an important role in evolution; ... it may have played a 

decisive role . ... within the last generation man has acquired an important 

symbiote. Man's new partner is the high-speed computer. 

-JOHN G. KEMENY 

Systems science is strongly dependent on the computer, which is its laboratory as 
well as the most important methodological tool. It is thus not surprising that modern 
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systems ideas began to emerge shortly after the first fully automatic digital computers 
were built in the late 1 940s and early 1950s. Systems science and computer technology 
have been developing side by side and have been influencing each other since that time. 

Advances in computer technology, together with developments in the area of 
artificial intelligence, have opened new methodological possibilities, have helped to 
clarify or sharpen the formulation of some fundamental philosophical problems, have 
made many speculative ideas increasingly operational, and have made it possible to 
implement some simple functions of the human mind on the computer. However, the 
aim of systems problem solving is not to replace the human mind by a machine, but 
rather to supplement it, in a symbiotic fashion, by a computer equipped with an 
organized package of appropriate methodological tools. This view is based on the 
recognition that the human mind, when encountering very complex systems, has 
certain faculties which make it superior even to the most sophisticated methods applied 
on the most advanced computers. The current understanding of these faculties is rather 
rudimentary and certainly unsatisfactory. In spite of the progress made by artificial 
intelligence, together with neurophysiology, psychology, and other relevant areas, it is 
reasonable to expect that there are abilities ofthe human mind which will never be fully 
understood operationally. 

Intuition, insight, and the ability of global comprehension are possibly the most 
valuable assets of the human mind, particularly one that is appropriately trained. 
However, complex systems frequently possess properties which are counterintuitive 
and resistant to global comprehension. As such, they represent traps for the human 
mind in the sense that they may guide it into illusory insights. To discover such traps, it 
is usually unavoidable to perform the tedious work of detailed analysis of the system at 
hand. While the human mind is weak and severely limited in this respect, it is exactly 
this domain of detailed analysis where the computer, equipped with appropriate 
methodology, excels. This ability gives the computer an important role as an intuition 
safeguard and intuition amplifier. 

The symbiosis of the human being (scientist, decision maker, designer, and the 
like) with the methodologically equipped computer, such as the GSPS, makes it 
possible to invent and utilize new approaches to various intellectual tasks, far superior 
to those applicable by either of them alone. The strength of the human being is his 
experience in the area of study, understanding and taking advantage of the context of 
investigation, intuition, global comprehension, feeling for the right solution, visual 
and auditory capabilities, creativity, and the like. The strength of the computer lies in 
its computational power, the ease with which it can handle a tremendous number of 
operations, far exceeding the human capability in this respect. It is the computational 
power which, when properly utilized, can significantly enhance the human intellectual 
qualities by providing the human being with desirable detailed analyses and, as already 
mentioned, help him to avoid the many counterintuitive traps associated with complex 
systems. 

One such counterintuitive trap lies in the assumption, often taken for granted, 
that oroperties of overall systems can be reconstructed from knowledge of corresponding 
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properties associated with their subsystems. For instance, it has often been 
assumed in interdisciplinary societal projects that the whole system is understood when 
we understand its economic, legal, political, ecological, and other relevant subsystems. 
Such an assumption is unfortunately warranted only rarely and, even if it is warranted, 
its validity depends on the chosen subsystems. There is no reason to believe that the 
"natural" subsystems (economic, political, etc.) are adequate in the sense that they 
contain enough information to allow a fairly accurate reconstruction (understanding) 
of the overall system. If the assumption of the ability to reconstruct an overall system 
from its specific subsystems is not warranted, the various conclusions about the overall 
system obtained from the subsystems may be incorrect and vastly misleading. 
Although information about the reconstruction possibilities is implicitly included in 
data regarding the overall system, their explicit determination requires a detailed 
analysis of the data. Methods for performing such analysis, referred to as reconstruct
ability analysis, have been under development during the last few years and are 
described in Chapter 4. While it is virtually impossible for the human mind to perform 
reconstructability analysis, except for minuscule systems, the computer has a great 
potential for extending it to systems of practical significance. 

Reconstructability analysis is just one example of an important methodological 
area which would have no practical significance without the aid of sophisticated 
computer technology. Such examples are not rare in systems problem solving; on the 
contrary, they are rather typical. 

The use of the computer as an intuition safeguard and amplifier in systems 
problem solving is only one of its two major roles in systems science. The other one is its 
use as the systems science laboratory. In this latter role, the computer is used for 
experimenting with systems simulated on it. At least three distinct aims of this 
experimentation can be recognized: 

I. The traditional use of computer simulation. A system that models relevant 
aspects of some object of investigation is simulated on the computer for the purpose of 
generating scenarios under various assumptions regarding the environment of the 
system as well as various parameters of the system itself. Some of the best-known 
examples in this category are in the areas of industrial and world dynamics initiated by 
Jay Forrester [F02, F03]. 

2. Discovery or validation of systems science laws. Experiments of some kind are 
performed on the computer with many different systems of the same class. The aim of 
this experimentation is to discover useful properties characterizing the class of systems 
under investigation or, alternatively, to validate some postulated hypotheses regarding 
the class. 

One of the most exemplary experiments of this kind was performed by Gardner 
and Ashby [GA6]. Their objective was to determine the effect of the size of a system 
(the number of variables involved) and its connectance (the number of dependencies 
between the variables) on the probability of stability in a particular class of systems. 
Gardner and Ashby restricted their investigation to a very special class of systems 
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(linear dynamical systems described by simultaneous first-order and linear ditTerential 
equations with constant coefficients). Among other results, their study led to the 
discovery of a critical connectance and the following statistical law valid for the 
investigated class of systems: If a linear dynamical system (as described above) is 
sufficiently large (consists of 10 variables or more) and its connectance (percentage of 
nonzero otT-diagonal entries in the matrix describing the system) is smaller than 13 % 
(critical connectance), then it is almost certain that it is stable; if its connectance is 
greater than 13 %, then it is almost certain that it is not stable; a 2 % deviation either 
way from the critical connectance is sufficient to convert the answer to the stability 
question from "almost certainly stable" to "almost certainly unstable" (Figure 1.4). 
Makridakis and Faucheux continued the same kind of experimental investigations for 
a more general class of dynamic systems described by nonlinear and time-varying 
ditTerential equations [MA3]. They expressed some of tneir results for various 
circumstances by mathematical formulas. For instance, the probability of stability p(n) 
of a given system with n variables from the above-described class of systems (chosen 
randomly) is given by the function 

p(n) = e1 - 1 . 1n , 

which fits the experimental data extremely well. It is certainly quite reasonable to view 
this function as a law of systems science. 

Somewhat similar simulation studies, biologically motivated, were conducted by 
KautTman [KA4] for systems represented by interconnected logic elements. 

Walker, Ashby, and Gelfand [GEl, WAl, WA2] experimentally investigated 
systems built up from functionally identical elements representing a simple finite state 
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machine with two inputs and two internal states. The aim of these studies was to 
determine the dependence of cycle length and other behavioral characteristics on the 
size of the system for various types of finite-state machines. 

As another example, of a rather different kind of experimental investigation of 
certain systems properties, let us mention an empirical formula 

for the average cost C of a two-level memoryless logic network (switching circuit) 
implementing a single Boolean function with n independent variables, g "one" vertices, 
and h "zero" vertices. The formula was determined by Kellerman [KE!] on the basis of 
a large number of computer experiments. Kl and K2 are constants that depend, 
generally, on the technology used, available types of components, and the definition of 
"cost." Kellerman also determined values of these constants for some cases of practical 
significance. This formula can help the logic designer in getting rough estimates of 
several different designs and throw some light upon the general question: "Using the 
same technology, objective criteria, and constraints, is a switching circuit with a inputs 
and b outputs cheaper or more expensive (on the average) than a switching circuit with c 
inputs and d outputs, when either a < c and b > d or a > c and b < d?" 

3. Experimental characteristics of methodological tools. A problem situation 
whose solution is known is simulated on the computer. A relevant methodological tool 
under investigation (usually one designed for a problem o( a nondeductive nature) is 
used to solve the problem. The result obtained is then compared with the known 
solution. This is repeated a sufficient number of times for different problem situations 
of the investigated class with the aim of determining useful characteristics of the 
methodological tool involved. Such characteristics are very important for users of the 
various methodological tools, as they allow them to properly interpret the results 
obtained and make appropriate decisions. Experiments of this kind are described in 
Chapter 4 for one of the problems of reconstructability analysis. 

The relationship between systems problem solving and computer technology is 
thus very rich. It is safe to say that systems problem solving, as understood and 
described in this book, would have virtually no practical value without the support of 
powerful computer technology. 

1.6. ARCHITECTURE OF SYSTEMS PROBLEM SOLVING 

Good architecture should be a projection of life itself and that implies an intimate 
knowledge of biological, social, technical and artistic problems. 

-WALTER GROPIUS 

Although it is quite clear that systems problem solving enjoys infinite variety, it 
has increasingly been recognized that the infinite variety can quite satisfactorily be 



www.manaraa.com

24 CHAPTER 1: INTRODUCTION 

captured by a finite number of categories. Such categories of mutually interrelated 
systems problems result from some underlying principles by which all recognized 
systems are conveniently classified and organized. 

Systems problem solving can be studied and developed at various levels of 
generality and detail. At the highest level of generality, the emphasis is on the 
development of pragmatically sound principles for organizing systems and on 
capturing a comprehensive view of systems problem-solving processes. Such general 
aspects of systems problem solving will be referred to as systems problem solving 
architecture. Professionals with competence in systems problem solving at this general 
level will be called systems architects. 

Architecture is one of the oldest professions. Indeed, it was already well developed 
and recognized as a profession in Ancient Greece more than 2,000 years ago. One of the 
best characterizations of architecture remains the famous book De Architectura, 
written in Latin by Marcus Vitruvius Pollio, a Roman architect and engineer, in the 
first century B.C. [VI I]. The following quote from this book captures his views quite 
well: 

The architect should be equipped with knowledge of many branches of study and 
varied kinds ofiearning, for it is by his judgement that all work done by other arts is 
put to test. This knowledge is the child of practice and theory. 

In its long and interesting history, architecture has been almost exclusively 
associated with the design of buildings. It has only recently been argued that certain 
general principles of architecture are not restricted to buildings, but are equally 
relevant and important to other areas of design. 

The need for architecture has been recognized in the area of computer design since 
the early 1960s. It seems that the term "computer architecture" was coined by Fred 
Brooks in association with the development of the IBM computer STRETCH. In his 
article entitled "Architectural Philosophy," he introduced the following definition 
[BR6]: 

Computer architecture, like any other architecture, is the art of determining the 
needs of the user of a structure and then designing it to meet those needs as 
effectively as possible within the economic and technological constraints. 

This view of computer architecture, which emerged through the experiences in 
designing STRETCH, was then consciously followed in the development of the IBM 
System/360, a family of mutually compatible computers designed in a common style 
that reflected users' needs as well as economic and technological realities. The result of 
this innovative approach to computer design is described in a paper entitled 
"Architecture of the IBM System/360" by its three architects, Amdahl, Blaauw, and 
Brooks [AM I]. 

After these beginnings, computer architecture quickly became recognized as an 
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important part of computer design. It is now a standard subject in virtually every 
curriculum in computer science or engineering, and it is also well covered in computer 
literature. 

The recognition of computer architecture was the first step in extending the 
concept of architecture beyond its traditional meaning as architecture of buildings. 
This book proceeds one step further and extends the concept of architecture to all 
systems. It is not the first instance when such a generalization is suggested. For 
example, Herbert Simon discussed this idea under the name "architecture of 
complexity" as early as 1962 lSI I], Heinz Zemanek has repeatedly argued the 
significance of generalizing the notion of architecture to all systems and introduced the 
names "generalized architecture" [ZE6] and "abstract architecture" [ZE7], and 
George Towner expressed similar sentiments in his book entitled 'The Architecture of 
Know/edge' [T02]. None of these suggestions, however, is oriented to systems problem 
solving. In that sense, this book is unique. 

The current trend of extending the scope of architecture beyond its traditionally 
narrow domain of buildings (including, perhaps, other related constructions such as 
bridges or ships) is by no means in conflict with the usual common dictionary definition 
of architecture. For instance, architecture is defined in the Oxford English Dictionary as 
"the art or science of building or constructing edifices of any kind for human use" or 
"the action or process of building" or "a building or structure." We can thus see that (i) 
the term "architecture" has three distinct connotations: a particular discipline, a 
particular type of human activity, and a particular result of that activity, and (ii) 
architecture is not restricted only to buildings in any of these connotations. 

Two key characteristics of architecture can clearly be extracted from the common 
dictionary definition. First, architecture is associated with design, construction, 
building, and the like, i.e., processess of creating artificial objects. Second, it is 
concerned with human use of the created objects. Let me elaborate on both of these 
characteristics. 

Although architecture is oriented to designing, constructing, and building, it does 
not cover the full range of these activities. The architect is thus a designer whose work 
has to be completed by other people. His role is to oversee the design at a global level, 
focusing on those aspects that involve each interface with the user. The remaining 
aspects, which are not necessary from user's point of view, should be left open in any 
good architectural design. In his considerations, however, the architect must be aware 
of the technological possibilities and economic restrictions to make sure that his 
architectural design can be completed without any great difficulties. 

The aim of architectural design is to prepare overall specifications, derived from 
the needs and desires of the user, for subsequent design and construction stages. The 
first task for the architect in each design project is thus to determine what the real needs 
and desires of the user are, as beautifully expressed by Julien Guadet, a French 
architect: "The architect must first of all determine the content, from which he can then 
derive the container." 

The process of good architectural design disregards almost all details of the 



www.manaraa.com

26 CHAPTER 1: INTRODUCTION 

prospective final construction, thus leaving enough freedom for further design and 
construction work, but it does contain specifications of all features that are significant 
for the user. As such, it represents an overall description of the envisioned 
construction, observed from an appropriate distance. The ability to choose the right 
distance, from which all user-significant properties are still well distinguished while all 
other properties vanish, characterizes a good architect more than anything else. More 
poetically, this point can also be expressed by the following quote from the book Tao 
Te Ching by a famous Chinese philosopher, Lao Tsu (sixth century B.c.): 

Greatness means vanishing; 
Vanishing means distance; 
Distance means return to greatness. 

Our previous remarks can be now well summarized by a statement made by Heinz 
Zemanek [ZE6]: 

Architectural design is design from top to bottom, making every detail a function of 
the whole. In this view, architectural design becomes complementary to formal 
definition: only if the method of description provides full freedom to omit details 
and to speak about the wanted properties of the full system before starting any work 
combining the building parts, can one derive the details from the general structure. 

According to Gerrit Blaauw [BL I], one of the architects of the IBM System/360, three 
main levels are characteristic of the top-down design of any system: architecture, 
implementation, and realization. The architecture of a system consists of the functional 
appearance of the system to the user; the implementation is concerned with the inner 
structure, considered from a logical point of view, which makes the required functions 
possible; and realization is a physical embodiment of the implementation. 

Several principles of good architecture are generally recognized. They are well 
described by Blaauw in his paper [BL 1]. The following list of principles is extracted 
from this paper: 

1. Consistency. Good architecture is consistent. That is, with a partial knowledge 
of the system the remainder of the system can be predicted. 

2. Orthogonality. This principle requires that functions which are independent of 
each other are kept separate in their specification. 

3. Propriety. According to this principle, only functions that are proper to the 
essential requirements of the system should be accepted; in other words, good 
architecture does not contain any unnecessary functions. 

4. Parsimony. No function in the architectural description should be repeated in 
different forms. 

5. Transparency. Functions introduced in the process of implementation should 
not be imposed upon the user. 
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6. Generality. If a function has to be introduced, it should be introduced in such a 
way that it can be used for as many purposes as possible. 

7. Open-endedness. Freedom should be provided for the use of a function in 
other ways than those envisioned during the design. 

S. Completeness. The introduced functions should satisfy the needs and desires 
of the user as completely as possible within the technological and economic 
constraints. 

The architecture of systems problem solving, to which this book is primarily 
devoted, should follow the general aims and principles of any architecture, as outlined 
in this section. First of all, it should be user-oriented, i.e., it should cover all types of 
systems problems with which the envisioned users deal. Although the notion of the user 
should be given as broad interpretation as possible, the primary focus is on scientists, 
engineers, and professionals of all sorts. The various types of systems problems are 
thus predominantly extracted from systems problems recognized in various branches 
of science and engineering, as well as professions such as medicine, management, or 
law. 

At the architectural level, systems problem solving should be seen and described 
from a proper distance to recognize its overall structure without being distracted by 
details. The actual architectural design for systems problem solving, which is the GSPS 
mentioned in Section 1.2, should be developed in an appropriate top-down manner 
and should reflect the various principles of good architecture. This is illustrated in 
Chapter 9, after all relevant functions of systems problem solving are determined and 
described in Chapter 2-S. As fas as the implementation of the GSPS is concerned, only 
some aspects of it are covered in the book, primarily associated with those problems 
which are epistemologically significant and which are based on highly general 
methodological distinctions. No realization of the GSPS is described in the book, but 
references are made to two partial realizations which are currently available. 

NOTES 

1.1. It seems that the terms "general system" and "general systems theory" are due to 
Ludwig von Bertalanffy. Although he introduced them orally in the 1930s, the first written 
presentations appeared only after World War II [BE6-8]. In his view, "general systems theory is 
a logicomathematical field whose task is the formulation and derivation of those general 
principles that are applicable to 'systems' in general." Von Bertalanffy was not only the originator 
of the idea of general systems theory but also one of the major organizers of the general systems 
movement, represented primarily by the Society for General Systems Research. The Society was 
founded in 1954 with the following objectives: 

(1) to investigate the isomorphy of concepts, laws, and models from various fields, and to 
help in useful transfers from one field to another; 
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(2) to encourage development of adequate theoretical models in fields which lack them; 
(3) to minimize the duplication of theoretical effort in different fields; and 
(4) to promote the unity of science through improving communication among specialists. 

Among early proponents of the general systems movement, Anatol Rapoport and Kenneth 
E. Boulding have probably been the most influential. Boulding envisioned general systems 
theory as "a level of theoretical model-building which lies somewhere between the highly 
generalized constructions of pure mathematics and the specific theories of the specialized 
disciplines" [B02]. 

Ideas quite similar to those associated with general systems research, although focusing on 
information processes in systems, such as communication and control, were proposed, in the late 
1940s and early 1950s, under the name "cybernetics." The most influential in this direction were 
the classic books by Norbert Wiener [WI I] and W. Ross Ashby [AS2]. Cybernetics, defined by 
Wiener as the study of "control and communication in the animal and machine," is based on the 
recognition that information related problems can be meaningfully and beneficially studied, at 
least to some extent, independently of any specific context. This view was considerably 
reinforced by a successful mathematical treatment given to the concept of information by 
Claude C. Shannon [SH3, SH4], a nucleus from which a mathematical theory of information 
emerged [FEI,GUI,KHI, WA6]. 

Later, in the 1960s, several efforts were made to formulate and develop various 
mathematical systems theories at high levels of generality. One of these theories, initiated mainly 
by Mihajlo D. Mesarovic, is based on the assumption that every system can be represented as a 
relation defined on a family of sets [ME I]. More mathematical structure is then introduced in 
various ways to study systems with certain specific properties. A good coverage of the theory can 
be found in a book by Windeknecht [WI3] and a more recent book by Mesarovic and Takahara 
[ME3]. Other mathematical systems theories were motivated by the desire to subsume theories 
of systems described by differential equations and finite state automata under one mathematical 
theory. The most successful of these theories turned out to be those developed by A. Wayne 
Wymore [WYI] and Michael A. Arbib [ARI]. Still other mathematical systems theories were 
developed from electric circuit theory through generalized circuit theory [ZA I] or from other 
background areas [BA2, HA 7, R04, ZA6]. 

The three intellectual areas-general systems research, cybernetics, and mathematical 
systems theories-together with computer technology, are the key elements of systems science. 
More details about the history and significance of these areas, as well as relevant aspects of some 
related areas (operations research, decision theories, artificial intelligence, etc.) can be found in a 
number of references [CA4, FLl, GA3, HA5, HAI2, KL4, KL8, KL9, R07]. 

1.2. It is interesting to note that the three periods of science suggested in Section 1.1 are 
characteristic of the three levels of societies that are usually recognized-the preindustrial, 
industrial, and postindustrial societies [BE I, GE5]. The preindustrial society is basically 
pre scientific; the industrial society is characterized by the one-dimensional science; and the 
postindustrial society, which seems better characterized by the name "information society" 
[NA I], is associated with the two-dimensional science. 

1.3. The idea of systems problem solving developed in this book occurred to me in the mid
I 960s, when I became interested in methodological issues of general systems research. It was first 
hinted in one of my papers [KL2]. Later, I explained the idea, which was still half baked, a little 
more in one of my books [KL3]. The first sketch of the GSPS architecture was published in 1978 
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in a paper I coauthored with Roger Cavallo [CA4]. The same year, Hugo Uyttenhove completed 
his dissertation at the Department of Systems Science of SUNY -Binghamton that was devoted 
to the implementation and realization of some parts of the GSPS [UY I]. This initial realization 
has been considerably extended since 1978 and this process is still ongoing. A software package, 
which represents a subset of the GSPS, is now commercially available [UY2]. 

1.4. Godel published his proof that the axiomatic method has certain inherent limitations 
in 1931 in German in Monatsheftefur Mathematik und Physik, vol. 38, pp. 173-198. A popular 
exposition is included in Godel's Proofby E. Nagel and J. R. Newman (Routledge & Kegan Paul, 
London, 1959). 

1.5. Figure 1.3 was prepared by Brian Gaines and Mildred Shaw to characterize my 
hierarchy of epistemological levels of systems; it is used in this book with their permission. 
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SOURCE AND DATA SYSTEMS 

A man said to the universe 
"Sir, I exist!" 
"However," replies the universe 
"The fact has not created in me 
A sense of obligation." 

-STEPHEN CRANE 
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Flower in the crannied wall, 
I pluck you out of the crannies, 
Hold you here, root and all, in my hand, 

Little flower-but if I could understand 
What you are, root and all, and all and all, 
I should know what God and man is. 

-ALFRED TENNYSON 

As human beings, we are able to distinguish ourselves from our environment. Our 
immediate awareness of the environment is a result of our perception. We have also the 
ability to store, process, and utilize information received from the environment, and 
this, in turn, reinforces our perception. These abilities are fundamental for our survival 
and well-being. They allow us to make decisions and act appropriately. 

In daily life, when we interact with various objects in our environment, the 
interaction is usually restricted to just a few representative properties of each object. 
Although the interaction with an object may become increasingly richer when one 
becomes more and more acquainted with the object, it is always considerably restricted 
by the limited scope of human perception and ability to act, as well as all other limits of 
the human scale. In situations such as scientific inquiry, engineering design, medical 
diagnosis, criminal investigation, or artistic creation, the interactions with the objects of 
interest are considerably more pronounced and often extended beyond the limits of the 
human scale. 

People trained and actively involved in each of the traditional disciplines of science, 
engineering, or other areas (medicine, law, etc.) are interested, in their professional 
work, in rather specific kinds of objects. For instance, objects of interest for ecologists 
include lakes, rivers, and forests; musicologists are interested in musical compositions or 
composers; psychologists study human individuals or small social groups; engineers are 
interested in all kinds of man-made objects such as power stations, cars, airplanes, 
computers, and the like; physicians deal with human patients and veterinarians with sick 
animals; criminologists are trained to investigate crimes; and biologists study all sorts of 
phenomena associated with living things. 

For our further considerations, let the term "object" be defined as a part of the 
world that is distinguishable as a single entity from the rest of the world for an 
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appreciable length of time. According to this definition, objects can be either material or 
abstract. Material objects can further be classified into natural (such as a piece of rock, a 
biological cell, the sun, or a group of animals) and man-made (such as an airport, a 
computer center, New York City, or a hospital). Abstract objects are usually man-made 
(such as a musical composition, a poem, or the U.S. Constitution), but some may be 
viewed as natural, at least to some degree (e.g. English or any other natural language). 

In most cases, objects consist of a virtually unlimited number of properties, each of 
which can meaningfully be investigated. As a consequence, it is almost always practically 
impossible to study objects completely. This means that a selection of a limited (and, 
usually, rather small) number of attributes, which best characterize the studied 
phenomenon of the object, has to be made. When such a selection is made, a 
measurement (observation) procedure has to be defined for each attribute which, in 
turn, defines an abstract variable that represents our image of the corresponding 
attribute. 

We say that a system is defined on the object of interest by selecting a set of relevant 
attributes on the object and by assigning a variable, in a particular way (through a 
measurement procedure), to each of them. The term "system" is thus always viewed as 
an abstraction-or an image--of some aspects of the object and not a real thing. This 
important distinction between the notions of object and system is well characterized by 
Ross Ashby in his book on cybernetics [AS2]: 

At this point we must be clear about how a "system" is to be defined. Our first 
impUlse is to point at the pendulum and to say "the system is that thing there." This 
method, however, has a fundamental disadvantage: every material object contains 
no less than an infinity of variables and therefore of possible systems. The real 
pendulum, for instance, has not only length and position; it has also mass, 
temperature, electric conductivity, crystalline structure, chemical impurities, some 
radio-activity, velocity, reflecting power, tensile strength, a surface film of moisture, 
bacterial contamination, an optical absorption, elasticity, shape, specific gravity, and 
so on and on. Any suggestion that we should study "all" the facts is unrealistic and 
actually the attempt is never made. What is necessary is that we should pick out and 
study the facts that are relevant to some main interest that is already given ... The 
system now means, not a thing, but a list of variables. 

As already hinted, the term "variable" is used in this book for an abstract image of 
an attribute. Hence, to be able to define it properly, we have to elaborate on the 
underlying concept of an attribute first. 

We observe that each attribute is associated with a set of possible appearances 
(manifestations). For instance, if the attribute is the relative humidity at a certain place 
on the Earth, the set of appearances consists of all possible values of relative humidity 
(defined in some specific way) in the range from 0% to 100%; if the attribute is the 
amount of estrogen hormone in a cm 3 of the blood of a woman, each particular amount 
of the hormone is an appearance of this attribute; if the attribute is defined by the color 
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of the light at an intersection controlling traffic moving in a particular direction, the 
appearances are normally red, yellow, and green. 

In a single observation, the observed attribute takes on a particular appearance. To 
be able to determine possible changes in its appearance, multiple observations of the 
attribute must be made. This requires, however, that the individual observations of the 
same attribute, performed according to exactly the same observation procedure, must 
be distinguished from each other in some way. Let any underlying property that is 
actually used to distinguish different observations of the same attribute be called a 
backdrop. The choice of this term, which may seem peculiar, is motivated by the 
recognition that the distinguishing property, whatever it is, is in fact some sort of 
background against which the attribute is observed. 

A typical backdrop that is applicable to virtually every attribute is time. In this case, 
different observations of the same attribute are distinguished by being made at different 
times. For example, the relative humidity measured at one particular place allows 
multiple measurements provided they are made at different times, e.g., on every hour; 
similarly, different measurements of the amount of estrogen in a cm 3 of the blood of the 
same patient in a hospital can be made at different times, say at 8:00 a.m. and 8:00 p.m. 
every day, during her treatment period. 

In some cases, different observations of the same attribute are not distinguished by 
time (i.e., are made at the same time or time is not relevant at all), but by different 
locations in space at which they are made. For example, various attributes characteriz
ing acoustic quality can be observed at the same time at different locations of a concert 
hall. Space as a backdrop is particularly significant in some disciplines, e.g., 
crystallography, civil and optical engineering, the fine arts of painting and sculpture, 
and anatomy. The term "space" is not limited only to one, two, or three-dimensional 
Euclidean space. For example, space represented by points on a sphere, which is 
associated with the Riemannian geometry, may be an appropriate backdrop for some 
attributes (e.g., geologic, climatologic, or geographic attributes defined on the Earth). 
The order of words in a text of some sort can also be viewed as one-dimensional 
(abstract) space; attributes such as the positions and functions of words in each 
sentence, numbers ofletters in the individual words, etc. can be observed at each point 
(word) of the text. 

Time and space are not the only possible backdrops. Multiple observations 
regarding the same attribute can also be distinguished by individuals of some 
population on which the attribute is defined, such as a social group, a set of 
manufactured products of the same kind, the set of words in a particular poem or story, 
a set of countries, a group oflaboratory mice, etc. For example, in any census, attributes 
such as the age, sex, income, occupation, academic degrees, etc., are observed at the 
same time for each individual of the total population of a country. 

The three basic kinds of backdrops-time, space, population--1::an also be 
combined. Although all combinations are possible in principle, time-space and 
time-population are especially important and frequently used combinations. Let me 
illustrate each of them by some examples. 
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TIme-space. This combination is best exemplified by any motion picture film, 
especially when it is used in research (growth of plants, study of microbioloical 
processes, or traffic situations at busy intersections and the like); most meteorologic 
attributes (relative humidity, temperature, wind velocity and direction, types of clouds, 
etc.) are observed at many places on the Earth as well as in time; a series of chess board 
situations of a particular chess game is another example of this combination. 

TIme-population. Attributes which characterize economic, political, and social 
situations are observed each year for different countries by various organizations such 
as the United Nations; a population oflaboratory mice whose various physiological or 
behavioral attributes as well as attributes under the control of the investigator (stimuli, 
drugs, surgical treatments) are observed on a daily basis; attributes such as the number 
of published books or journals in certain categories, average book price and journal 
SUbscription rate, average size of books and journals, total income, and many others, 
can be observed annually for a population of publishers over a period of time. 

Time, space, and population, which have special significance as backdrops, may 
also be used as attributes. For instance, when sunrise and sunset times are observed 
each day at various places on the Earth, the attribute is time and its backdrops are time 
and space; record times in some sport event, say swimming 400 m free style, are 
observations of an attribute distinguished by time (i.e., dates when they were 
accomplished); a location of a vehicle as an attribute can be observed in time as a 
backdrop; time needed to complete a problem can be observed for a population of 
computer programs used on the same computer. 

As illustrated by this spectrum of examples, the selection of proper backdrops is 
quite flexible, but it is not completely arbitrary. Constraints on this selection are 
adequately expressed in terms of the following requirements for properly chosen 
backdrops; they can be used as guiding principles in the process of defining a system on 
an object of interest. 

First, backdrops must be applicable to all attributes in the system for which they are 
defined. For instance, neither time nor space can be used to distinguish the same tests 
performed on manufactured products of some kind (it does not matter when and where 
the tests are made); no space or population are applicable to attributes that represent a 
musical composition; neither time nor a population is applicable for describing a 
mosaic. 

Second, backdrops of a system must be compatible with the purpose for which the 
system is defined. For instance, appropriate attributes are usually observed on a patient 
for the purpose of monitoring his or her recovery after surgery and, if necessary, 
making desirable interventions; clearly, the only backdrop compatible with this 
purpose is time. On the other hand, if the purpose were to develop a medical data base, 
then the same attributes would be distinguished not only by time, but also by names or 
other identifiers of individuals in the same recovery stage whose data are to be included 
in the data base; hence, both time and a popUlation are compatible with the purpose in 
this case. 

Third, observations of all attributes in a system must be uniquely distinguished by the 
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backdrops of the system, i.e., each element of the backdrop set (a particular time instant, 
point in space, individual of a population, or an appropriate combination of these) 
yields one and only one appearance for each of the attributes. For example, when 
attributes of words in a text of some sort are investigated (their position and function in 
each sentence, the number ofletters in them, etc.), the population of all words in the text 
seems a reasonable choice of a backdrop. It is clearly applicable to the attributes as well 
as compatible with the purpose of investigation. However, it does not satisfy the 
requirement of unique distinguishability of observations. Indeed, the same word may 
have the same position and function in several sentences in the text and, of course, it has 
always the same number ofletters. To distinguish each observation, we have to resort in 
this case to one-dimensional abstract space-the location in the text. 

Once the meaning of attributes, backdrops, and their relationship is properly 
understood, it is easy to introduce a formal definition of a system defined on an object
or object system. It is a set of attributes, each associated with a set of appearances, and a 
set of backdrops, each associated with a set of its elements. 

~ Formally, 

(2.1) 

where N n = {I, 2, ... , n} and N m = {I, 2, ... , m} (N subscripted by a positive integer 
is always used in this book to denote the set of positive integers from 1 through the 
value of the subscript); ai' Ai denote an attribute and a set of its appearances, respectiely; 
bj , Bj denote a backdrop and a set of its elements, respectively; and 0 denotes an object 
system. 

The sets Ai and B j in Eq. (2.1) are well defined for some attributes and backdrops. 
For example, when a population is used as a backdrop bj (a social group or a group of 
animals, manufactured products of some kind, or a population of countries), the set Bj 

is usually well defined. Similarly, appearance sets Ai are well defined for attributes ai 
such as the monthly income of a person, the colors of a traffic light, the number ofletters 
in a word, or number of passengers on a flight. There are many cases in science, 
however, in which the sets are not known and cannot be determined without resorting 
to metaphysics. Nevertheless, independently of what is the case, they can be related to 
some well-defined sets by specific observation or measurement procedures. The latter 
sets are thus images of the set Ai and Bj in terms of which knowledge about the 
attributes is formulated. ... 

The very existence of attributes, backdrops, and the associated sets Ai' B j , as 
properties of natural objects, is a subject of philosophical controversy. Various views 
range from naive realism, which fully accepts their existence, to the extreme form of 
operationalism (or instrumentalism), which rejects their existence and maintains that 
the meaning of any scientific concept is fully and exclusively determined by the 
specification of a measurement procedure. 

This controversy is irrelevant to our aims. However, we have to be aware that, 
independent of the position one takes on the existence issue, the sets Ai and B j are often 
unknown. In such cases, the object system is vacuous and can be given some meaning 
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only in association with specific observation or measurement procedures through 
which images of the attributes are created. Hence, the object system has to be viewed as 
a component of a larger system; it is of little or no use when considered alone. 

2.2. VARIABLES AND SUPPORTS 

Nature does not declare herself freely, but only speaks when spoken to ... 
-FRANCIS BACON 

The term "variable" is used in this book for an operational representation of an 
attribute, i.e., for an image of an attribute defined in terms of a specific measurement or 
observation procedure. Each variable has a name (label), which distinguishes it from all 
other variables under consideration, and is associated with a particular set of entities 
through which it manifests itself. These entities are usually referred to as states (or 
values) of the variable; the whole set is called a state set. 

In a similar way, the term "support" is used for an operational representation of a 
backdrop. Each support has a unique name and is accompanied by a particular set; let 
this set be called a support set and its elements support instances. 

In analogy with attributes and backdrops, it is assumed that different observations 
of the same variable are distinguished by instances of the supports involved. If two or 
more supports are used, their overall support set is the Cartesian product of the 
individual support sets. It is required that each particular support instance (of the 
overall support set) identify one and only one observation of the associated variables. 

Some mathematical properties, such as an ordering or distance, may be defined on 
the individual state sets or support sets. As far as they are embedded in the relevant 
measurement procedures, they reflect some underlying properties of the corresponding 
attributes and backdrops. Differences in these properti<?s among variables or supports, 
which have important methodological implications, are referred to as methodological 
distinctions. They are discussed in Section 2.3. 

In addition to specific variables and supports, each of which represents a particular 
attribute or backdrop, respectively, we also recognize general variables and supports. 

The latter are abstract entities, i.e., they have no meaning in terms of some attributes or 
backdrops. Their state or support sets and the various properties defined on these sets 
are represented in some convenient standard manner. 

A general variable is given an interpretation when elements of its state set are 
assigned by an isomorphic mapping (a one-to-one mapping that preserves all relevant 
mathematical properties defined on the set) to elements of the state set of a specific 
variable; the same holds for general and specific supports when applied to their support 
sets. Let any isomorphic mapping of this kind be called an exemplification of the general 
variable (or general support), and le.t the inverse of any of these mappings be called an 
abstraction of the specific variable (or specific support) involved. 
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~ To formalize the concepts of general and specific variables and their supports, let 
the following symbols be added to those introduced in the last section: Vi' Vi' "Yi: a 
general variable, its state set, and a set of mathematical properties defined on Vi' 
respectively; Vi' Vi' 'f'i: the same aspects of a specific variable which is an exemplification 
of Vi; Wj' Wj' "11"/ a general support, its support set, and a set of mathematical properties 
defined on Wj' respectively; Wj' Wj' "Ii): the same aspects of a specific support which is 
an exemplification of Wj' 

Let any operation by which a specific variable is introduced as an image of an 
attribute be called an observation channel. The observation channel through which 
attribute ai is represented by variable Vi realizes a function 

(2.2) 

that is homomorphic with regard to the presumed relevant properties of Ai and those in 
-f'i' A similar function, say 

(2.3) 

expresses a representation of backdrop bj by support Wj; it must be homomorphic 
with respect to the presumed relevant properties of the backdrop (say time) and those 
in set fri . .... 

In some cases of attributes and backdrops, the observation channels may consist of 
explicit definitions of the functions 0i and wi' In other cases, however, when sets Ai and 
B j are not known, no explicit definitions of the functions are possible without the use of 
some metaphysical assumptions. In such cases, the representations of attributes and 
backdrops are introduced physically (operationally) rather than by mathematical 
definitions. 

Except for the trivial cases, when functions 0i and Wi are explicitly defined, an 
observation channel consists of a physical device and a procedure describing its use. The 
device is usually called a measuring instrument or meter. The procedure is a set of 
instructions which specify how to use the instrument under various conditions. 

The term "measuring instrument" should be given a broad interpretation. In some 
areas, such as psychology, social sciences, or ethology, the investigator himself (or his 
team) functions as the instrument or, alternatively, questionnaires or tests are used to 
measure attributes such as opinions, attitudes, or abilities of people. Any measuring 
instrument must be able to interact with the measured attribute and must convert this 
interaction into some form which directly represents states of the corresponding 
variable (e.g., a pointer on a scale, digital display, or graphical record). 

Although measuring instruments and procedures that form observation channels 
must satisfy some general principles of measurement, they are considerably dependent 
on what is actually measured. As such, their study, design, and use are predominantly 
organized along the traditional disciplines of science. While both the theory and 
practice of measurement are crucial for the traditional disciplines of science, as well as 
such professions as engineering, medicine, management, etc., it is outside the scope of 
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systems problem solving. Hence, observation channels are only acknowledged in the 
GSPS framework as components that are necessary for a full definition of any 
particular real world system, but they are not included in the GSPS proper. It is 
recognized that, owing to their intimate association with specific phenomena, obser
vation channels must be studied and developed within the traditional disciplines. 
~ The GSPS deals only with general variables and supports. Given a general variable 

Vi' it is exemplifiable by a specific variable Vi if and only if a function 

(2.4) 

exists that is isomorphic with respect to the mathematical properties in 1'i' Similarly, a 
general support Wj is exemplifiable by a specific support Wj if and only if a function 

(2.5) 

exists that is isomorphic with respect to "HIj • Each particular isomorphic function ei (or 
I) defines an exemplification of Vi by Vi (or Wj by Wj' respectively). Inverse functions 
of ei , Bj , i.e., 

define abstractions of Vi and Wj' respectively. ~ 

(2.6) 

(2.7) 

Example 2.1. To illustrate the concepts introduced, let a j be the adjusted annual 
income of a U.S. taxpayer for the last year, as reported in his income tax form this year. 
Then, Ai consists of all possible amounts of money in U.S. dollars, from zero to the 
largest recognized amount, say $100,000.00. The set is finite since the smallest unit of 
currency is Ie. We also recognize that it is totally (linearly) ordered. For calculating 
the income tax, it is sufficient to recognize only some ranges of the taxable income, 
each associated with some percentage of income that is to be paid as income tax. For the 
sake of simplicity, let these ranges be $0-4,999.99, 5,000.00-9,999.99, ... , 
90,000.00-94,999.99,95,000.00-100,000.00 and let the state set Vj of a specific variable 
vj ' which is to be used to represent attribute ai' be the set of minimal values in these 
ranges. A meaningful representation of aj by Vi can be introduced by function OJ which 
assigns to all values in each of the defined ranges the minimum values in that range, e.g., 
0i($ 52,357) = $ 50,000 or 0i ($ 796) = $ 0. Function 0i is clearly homomorphic with 
respect to the total ordering in Ai since for each pair rx, {3 E Ai' if rx :::; p, then 0i (rx) :::; 0i({3)· 
For methodological convenience, a general variable Vi can be defined for the specific 
variable Vi by an abstraction function ei- 1: Vi -+ Vi' This function has to be isomorphic 
with respect to the ordering in Vi' Assume that Vi is required to be a set of integers. 
Then ei- 1 can be defined, perhaps in the most natural way, by the equation 

(k = 0, 1, ... , 19). 
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The backdrop in this example is the set of all U.S. taxpayers in some category, say 
residents of the State of New York. No mathematical property is recognized in this set. 
Hence, w/ Bj -+ Wj can be any one-to-one function by which a unique identifier, say 
social security number, is assigned to each taxpayer. For methodological convenience, 
an abstraction Cj- 1: Wj -+ Wj can be introduced by any one-to-one fUnction that, e.g., 
assigns integers in the set N n , where n is the number of taxpayers in the population, to 
the individual social security numbers. 

~ Let me elaborate now a little more on the concept of observation channel. Thus far, 
it has been defined in terms of functions 0i and Wj given by (2.2) and (2.3), respectively. 
These functions induce partitions on sets Ai and Bj , say partitions Adoi and Bj/wj . 

Elements in each block of these partitions are viewed as equivalent in the sense that they 
are not distinguished by the observation procedure involved. Each block of these 
partitions is thus represented as a whole by one state of variable Vi or one instance of 
support wj • When an observation of attribute Q i is made at some support instance, the 
observed attribute assumes a particular appearance from set Ai' This appearance is a 
member of exactly one block of the partition Adoi' It is assigned by 0i to a particular 
state of variable Vi' It is thus assumed that each observation permits us to recognize that 
block of Adoi to which the actual appearance belongs, even though it does not allow us 
to identify the individual appearance itself. 

The assumption that blocks of Adoi can be distinguished by observations is 
warranted only when no observation errors are involved. Such situations do exist, as 
illustrated by Example 2.1, but they are relatively rare. Nevertheless, the assumption 
may be accepted as practically reasonable in other cases too, provided that the blocks of 
Ai /Oi are substantially larger than the estimated ranges of systematic observation errors. 
In such cases, a block of Adoi can be correctly identified in each observation unless the 
actual appearance is close to a boundary between two blocks, i.e., within the range of 
observation errors. Since attributes (at least some) are not under the control of the 
investigator, he cannot prevent them from assuming appearances undesirably close to 
the boundaries between the blocks in Adoi and, consequently, the possibility of 
identifying incorrect blocks by observations can only be reduced by an appropriate 
choice of the observation channel 0i' but it cannot be completely avoided. 

As a result of the possibility of measurement errors, appearances near boundaries 
between the blocks of Adoi have an associated observation uncertainty. This 
uncertainty can be viewed in either of the following two ways: 

1. The blocks of a partition defined on Ai are viewed as sets without sharp 
boundaries. Using the terminology of fuzzy set theory, the blocks are fuzzy subsets of 
the set Ai' It is assumed that Ai is crisp (i.e., nonfuzzy). Each element of Ai belongs to 
each individual fuzzy subset with some membership grade. According to this view, the 
subsets are not defined by the function 0i' but solely by the membership grades. 

2. The partition on Ai is defined by the function 0i' It is thus the same partition 
Adoi that was considered previously. Its blocks are obviously crisp (non fuzzy) subsets 
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of A;. Given an element of A;, it is generally uncertain to which block of Ado; it belongs. 
This uncertainty can be expressed by a function that assigns a real number (usually 
between 0 and 1) to each pair consisting of an element of A; and a block of Ado;. This 
number is assigned in such a way that it expresses, according to the given context, the 
degree of certainty that the element belongs to the block. 

In our further considerations, the second alternative is followed. That requires that 
function 0;, as given by (2.2), be defined first. Once defined, it imposes the partition Ado; 
upon A;. A function 

(2.8) 

is then defined, where oAx, y) expresses the degree of certainty that x belongs to y. Since, 
however, each block of Ado; is uniquely represented (labeled) by a state in set V; 
(according to the function 0;), function 0; can be redefined in a more convenient form 

(2.9) 

where o;(x, y) expresses the degree of certainty that x belongs to that block of Ado; 
which is represented by state y of variable V;. 

Function 0;, defined by (2.9), characterizes observations of attribute a; subject to 
uncertainty. It can also be viewed as a membership grade function that defines a fuzzy 
relation on the Cartesian product A; x ct. It is thus reasonable to call 0; a fuzzy 
observation channel. Whenever confusion might arise, function 0; will be referred to as a 
crisp observation channel. 

It is obvious that the crisp observation channel 0; is a prerequisite for defining the 
fuzzy observation channel. The crisp observation channel may also be viewed as a 
special case of the fuzzy observation channel. Indeed, when 

if 0; (x) = y, 

otherwise, 

0; defines a crisp function from A; into ct that is identical with function 0;. 

As far as backdrops are concerned, we can introduce a function 

Wj: Bj x Wj .... [0,1], (2.10) 

analogous to (2.9) and based on (2.3), where Wj (x, y) expresses the degree of certainty 
that x belongs to that block of the partition Bj/wj which is represented by instance y of 
support Wj' However, there is virtually no use for this function. Indeed, when Bj is a 
population, function Wj is one-to-one and no observation uncertainty is usually 
involved. When B j is time or space, the actual observation is under the control of the 
investigator, i.e., he decides when to make observations or where to make them. This 
control over the actual observations, together with his considerable freedom to properly 
define function wj ' enables the investigator to avoid any uncertainty in spite of 
unavoidable errors in time or space measurements. For example, if he decides that 
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temperature, relative humidity, etc., be recorded at some meteorological station 24 times 
each day, 30 minutes after every hour, he may define function Wj in such a way that each 
block of the resulting partition Bj/wj is a I-hour time interval: [0-1 a.m.), 
[1-2 a.m.), ... , [11 p.m.--Oa.m.). When a particular measurement of the observed 
attributes is taken, say at 1:30 a.m., there is clearly no uncertainty that this measurement 
represents the block [1-2 a.m.) under normal circumstances. Singular cases may occur 
(such as a gross violation of the rules or a malfunction of the used clock), but such cases 
are beyond the scope of what is usually considered a normal observation channel. 

The various issues associated with observation channels can now be summarized as 
follows. For all practical purposes the crisp observation channel Wj is sufficient for any 
backdrop, be it a population, time, or space. For attributes, however, both crisp and 
fuzzy observation channels (OJ and 0;) are useful and either type may be more 
appropriate under different circumstances. 

Example 2.2. Let attribute aj be the age of a person in a population Bj • Let 
elements of Aj be numbers of years in the range from 0 to 100. Let 

Vj = {very young, young, middle-aged, old, very old} 

and let OJ be such that the one-to-one function Adoj -+ ri; is defined as follows: 

{ 0,1, ... , 14}-very young, 

{15, 16, ... ,29}-young, 

{30, 31, ... ,49}-middle-aged, 

{50, 51, ... ,74}-<>ld, 

{75,76, ... , l00}-very old. 

When the crisp observation channel OJ is used, it leads to a rather poor characterization 
of persons whose age is close to the boundaries between the blocks of AdOj' For 
instance, a 49-year-old person is labeled as middle-aged while a 50-year-old one is 
labeled old. When a fuzzy observation channel OJ is used, for example the one 
characterized in Figure 2.1, the description is more satisfactory since it does not contain 
such abrupt changes. It is important to observe that a fuzzy observation channel does 
not produce one state of ri; for one observation, as the crisp channel does, but a tuple of 
values OJ (x, y) for all y E ri; . For example, when observing the age of a person 25 years 
old, the following 5-tuple would be obtained via our fuzzy channel: 

OJ(25, very young) = 0.1 

oj(25, young) = 0.97 

oj(25, middle age) = 0.3 

oj(25, old) = 0 
oj(25, very old) = o ...... 
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Figure 2.1. Crisp and fuzzy observation channels of the totally ordered attribute "age of a 
person." 

2.3. METHODOLOGICAL DISTINCTIONS 

Ifwe say that a propert y has a distin ct structure we mean a Structure determined by 

empirical r elations between empirical objects . ... The more relations are taken into 

account in the definition of a scale, the more do Ihe scale values tell us about 

realilY· ... II would be a waste of information to construCI a scale which is a 
homomorphism with respect to a/l order relation and to neglect, say, an additive 
relation, if one can be empirically defi ned. 

- J. PFA ZAGL 

The term "methodological distinction" is used in this book for characteristics of 
systems problems by which different problem types are distinguished within each 
epistemological problem category. Methodological distinctions involve either systems 
or requirements or both. Such changes as introducing a new methodological distinction 
into a system, excluding one, or replacing one by another do not change the 
epistemological type of the system. However, they may affect sets of methodological 
distinctions applicable to various requirements. Hence, methodological distinctions for 
systems must be chosen prior to those for requirements. 

As the name suggests, problem types that differ from each other solely in some 
methodological distinctions require different methods, but they have exactly the same 
epistemological status in terms of the epistemological hierarchy of systems. 
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Methodological distinctions are thus criteria for a secondary classification of systems 
problems. They are applied in addition to the primary classification, the one based on 
epistemological criteria. Epistemological problem types are too broad for any specific 
methodological treatment. The aim of methodological distinctions is thus to introduce 
refined types of problems that are methodologically tractable. 

The set of methodological distinctions recognized for systems, within a particular 
conceptual framework, is related to the set of recognized epistemological types of 
systems by the relation of "being applicable to"; a relation of the same kind exists also 
for requirements. While some methodological distinctions are applicable only to certain 
epistemological types, others are applicable to all types. 

In this section, methodological distinctions applicable to variables and their 
supports are discussed. Since variables and supports are parts of every system, 
regardless of its epist~mological type, these methodological distinctions are applicable 
to all epistemological types of systems. 

Methodological distinctions regarding variables or supports involve properties 
that are recognized in their state sets or support sets, respectively. When a variable (or a 
support) represents an attribute (or a backdrop), the properties cannot be artitrary. 
Properties that are obviously not satisfied by the attribute or backdrop sets must not be 
recognized in the corresponding state or support sets. On the other hand, some 
presumed properties of the attribute (or backdrop), which are not relevant to the 
problem of concern, need not be recognized in the corresponding variable (or support). 

To avoid possible confusion, the following remark is needed in order to clarify the 
meaning of methodological distinctions at the lowest epistemological level-the level of 
attributes, backdrops, and their abstract counterparts (variables and supports). For 
purposes of systems problem solving, methodological distinctions are defined for 
variables and supports (specific as well as general) and not for the corresponding 
attributes and backdrops. Methodological distinctions are thus defined at the lowest 
epistemological level solely in terms of the mathematical properties of the state sets and 
support sets involved. It must be ensured, of course, that the recognized properties do 
reflect some underlying properties of the corresponding attributes and backdrops. This, 
however, is an empirical issue, associated primarily with the methodology of 
measurement, which is beyond the scope of systems problem solving. 

Each variable is associated with one or more supports and it is the overall support 
set within which changes in states of the variable occur. Hence, it is the combination of 
properties recognized in the state set and those in the overall support set which 
represents the most elementary kind of methodological distinctions. 

When more than one support is involved, the overall support set is the Cartesian 
product of the individual support sets. Properties recognized in each individual support 
set have to be properly combined to express recognizable properties of this Cartesian 
product; these properties of the overall support set (the Cartesian product) are then used 
in characterizing, together with properties of the associated state set, an elementary 
methodological distinction. If the same properties are recognized in each of the 
individual support sets, it is easy to combine them, and the derived overall properties are 
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homogeneous over the whole Cartesian product. The situation becomes more difficult 
when properties recognized in the individual support sets are not the same. In such 
cases, there are at least some overall properties that do not extend over the whole 
Cartesian product. 

For the sake of simplicity, let us initially assume that we deal with one support set, 
regardless of whether it is an individual support set or a Cartesian product of several 
support sets, and that the properties recognized in it extend over the entire set. 

The possibility that no mathematical property is recognized in a state set as well as 
the associated support set must be considered as one of the fundamental meth
odological distinctions. It is an extreme case, which would be a poor choice for any 
variable (or support) that is supposed to represent an attribute (or a backdrop) with 
some clearly recognizable and relevant properties. In many cases, however, this extreme 
methodological distinction is perfectly appropriate or even necessary. For example, 
variables such as marital status (single, married, divorced, widow), political affiliation 
(democrat, republican, independent), blood type (A, B, 0, AB), or sex (female, male), 
each defined on individuals of some social population, illustrate the significance of this 
methodological distinction. In the literature devoted to measurement scales, variables 
of this kind are usually referred to as nominal scale variables. 

The most fundamental property recognized in state or support sets is an ordering. 
From the methodological point of view, two kinds of orderings must be distinguished: 
partial orderings and linear orderings. A partial ordering is a binary relation on a set (a 
state or support set in our case) that is reflexive, antisymmetric, and transitive. A linear 
ordering is stronger; it is a partial ordering that is connected (i.e., each pair of distinct 
elements in the set is ordered either one way or the other). 

~Formally, a partial ordering Q on a set, say a state set Vi' is a binary relation 

Q C Vi X Vi 

that satisfies the following requirements: 

1. (X,X)EQ (reflexivity); 

2. if (X,Y)EQ and (y,X)EQ then x = y (antisymmetry); 

3. if (x, y) E Q and (y, z) E Q, then (x, z) E Q (transitivity). 

If (x, y) E Q, then x is called a predecessor of y and y is called a successor of x. If (x, y) E Q 
and there is no Z E Vi such that (x, z) E Q and (z, y) E Q, then x is called an immediate 

predecessor of y and y is called an immediate successor of x. In addition to the 
requirements ofreflexivity, antisymmetry, and transitivity, a linear ordering satisfies the 
following requirement of connectivity for all x, y E Ai: if x +- y, then either (x, y) E Q or 
(y,X)EQ .• 

Examples of variables with partially ordered state sets are seniority or educational 
background of a person (defined, e.g., on a population of governmental employees). 
Examples of variables with linearly ordered state sets are the well-known Mohs' scale of 
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hardness of solids, pitch as a characteristic of tones, or examination grades defined on a 
population of students. The ordering of support sets is best exemplified by the ordering 
of any time set. Although in most cases the ordering is linear, partially ordered time sets 
are also meaningful, e.g., in the study of spatially separated distinct processes (such as 
distributed computers) which communicate with one another and in which the 
transmission delays in the communication are not negligible compared with the time 
between changes in states of variables in the individual processes. Useful orderings can 
also be recognized in some populations. For example, human populations can be 
ordered by relations such as being older than, being a descendant of, or having a higher 
job position. They are usually partial orderings and their relevance depends on the kind 
of the population and the overall problem context. Variables with linearly ordered state 
sets are frequently referred to as ordinal scale variables. 

In addition to the partial or linear orderings, there are other mathematical 
properties whose recognition in state or support sets is useful in many instances. One of 
the most important of these is a measure of distance between pairs of elements of the set 
involved. Such a measure is defined by a function that assigns to each pair of elements in 
the set a number which expresses how far apart the two elements are with respect to 
some underlying ordering. 

~Given a set, say a state set Vi' a distance is thus defined by a function (j of the form 

However, to qualify as an intuitively acceptable measure of distance, the function must 
satisfy the following requirements for all x, y, ZE Vi: 

(M) (j(x, y) ~ 0 (requirement of nonnegativity); 
((j2) (j(x, y) = 0 iff x = y (requirement of zero distance, also referred to as 

nondegeneracy requirement); 
((j3) (j(x,y) = (j(y,x) (symmetry requirement); 
((j4) (j(x, z) :::; (j(x, y) + b( y, z) (triangle inequality requirement). 

Any function that satisfies requirements (M)-((j4) is said to define a metric distance on 
set Vi. The pair (Vi' (j) is then called a metric space. Metric distances can, of course, be 
defined on both state sets and support sets. .... 

Examples of variables with recognizable and useful metric distances are almost all 
variables used in physics such as length, mass, pressure, electric current, voltage, or 
sound intensity, but there are many examples outside physics as well, e.g., variables 
whose state sets are money amounts, production amounts, numbers of defects, numbers 
of accidents, etc. It is quite obvious that space as well as time are supports for which the 
notion of metric distance is quite naturally applicable. On the other hand, rarely are 
useful metric distances recognized in populations. However, one sucn example is a 
population of students who are linearly ordered by their performance, and the distance 
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is then defined for each pair of students by the absolute value of the difference between 
their positions in the ordered set. Variables whose state sets are associated with a metric 
distance are often called metric variables. 

One additional property of state or support sets, which is of sufficient method
ological significance to be recognized as a fundamental methodological distinction in 
our framework, is continuity. This is a concept well known from calculus and, 
consequently, it is not necessary to develop it here. Nevertheless, a few remarks 
regarding some aspects of continuity, which are relevant to later discussions, are 
appropriate . 

• First, a necessary condition for continuity in a set is that the set is ordered. Since 
linear ordering is a special case of partial ordering, it is preferable to define continuity in 
terms of partial ordering. This can be done in a number of different manners. One 
definition of continuous partial ordering is based on the notion of a cut of a partially 
ordered set, which is defined as follows: A cut of a partially ordered set, say a state set Vi' 
is a partition of the set into two nonempty subsets, say X and Y = Vi - X, such that 
either no element of X is a predecessor (according to the partial ordering defined on VJ 
of any element in Yand some element in Yis a predecessor of some element in X or no 
element in X is a successor of any element in Yand some element in Yis a successor of 
some element in X. A continuous partial ordering in Vi is then defined as a partial 
ordering in which any cut X, Yof Vi characterized by some element in X being a 
predecessor of some element in Yis such that either X has a largest upper bound in Yor Y 
has a greatest lower bound in X. ..... 

The notion of continuous partial ordering is best exemplified by the ordering 
relation of "less than or equal to" defined on the set of real numbers or Cartesian 
products of this set. As a matter of fact, the very notion of a continuous variable or 
support is based on the requirement that the associated state or support set be 
isomorphic to the set of real numbers. 

It follows from the previous remark that state or support sets of any continuous 
variables or supports, respectively, are uncountably infinite. As such, continuous 
variables and supports contrast with those which are associated with finite sets or, 
possibly, countably infinite sets. These latter are usually called discrete variables or 
supports. 

While continuous variables and supports are represented by real numbers, their 
discrete counterparts can conveniently be represented by integers. This is particularly 
important when state or support sets of discrete variables or supports are linearly 
ordered and, hence, isomorphic to appropriate sets of integers. A natural metric distance 
defined by the absolute value of differences between integers, as well as by integer 
arithmetic, can also be used in dealing with some discrete variables or supports. 

For our purposes the properties of ordering, metric distance, and continuity in 
state or support sets are considered a basis from which the most significant 
methodological distinctions are derived at the level of variables and supports. The 
following is a list of alternatives for each of these three properties in which the individual 
alternatives are assigned integer identifiers: 
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O-no ordering 
I-partial ordering 
2-linear ordering 
O-not recognized 
I-recognized 
O--<iiscrete 
l--{;ontinuous 
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The status of each variable (or support) with respect to these three properties can be 
characterized uniquely by a triple 

(ordering, distance, continuity), 

where a specific alternative (or its identifier) is entered for each of the properties. Thus, 
for example, (2, 1, 0) characterizes a discrete variable with a linearly ordered state set in 
which a metric distance is recognized. 

Although 12 combinations of the three properties can be formed, the following 
three combinations are not meaningful: (0, 0, 1), (0, 1, 0), (0, 1, 1). Indeed, when no 
ordering is recognized in a set, no meaningful metric distance can be recognized in it and 
neither can it be viewed as continuous. Hence, there are nine meaningful combinations. 
Let these meaningful combinations be called methodological types of variables or 
supports. They can be partially ordered by a relation of "being methodologically more 
special than." The Hasse diagram of this partial ordering, which forms a lattice, is 
presented in Figure 2.2a. A simplified lattice is shown in Figure 2.2b for a framework in 
which the properties of ordering and distance are recognized, but not continuity. 

00 

200 110 10 

201 111 
20 11 

211 21 

(a) (b) 

Figure 2.2. Lattices of methodological types of variables or supports. 



www.manaraa.com

50 CHAPTER 2: SOURCE AND DATA SYSTEMS 

At the level of variables and supports, each methodological distinction for a single 
variable is a combination of methodological types of that variable and the associated 
supports. There are 9 types of each. Hence, if only one support is involved or if it is 
required that all supports in a combination be of the same methodological types (the 
most common case), then the number of methodological distinctions is 81. (as 
methodological types of variables and supports do not restrict each other). If, in 
addition, the framework were restricted to discrete variables and supports, whose 
methodological types are summarized in Figure 2.2b, the number of methodological 
distinctions would be reduced to 25. The lattice of methodological distinctions for this 
case is described in Table 2.1. 

Assume now that there are two or more supports, say m supports. They can all be of 
one type, two types (regardless of order), three types (regardless of order), etc. Assuming 
that m ::s; 9 (which is a realistic assumption), the total number of methodological types of 

TABLE 2.1. 
Lattice of Methodological Distinctions for 

Discrete Variables and Supports 

Methodological 
distinction 

00/00 
00/10 
00/20 
00/11 
00/21 
10/00 
10/10 
10/20 
10/11 
10/21 
20/00 
20/10 
20/20 
20/11 
20/21 
11/00 
11/10 
11/20 
II/II 
11/21 
21/00 
21/10 
21/10 
21/11 
21/21 

Immediate successors 
in the lattice 

10/0000/10 
10/10 00/20 00/11 
10/2000/21 
10/11 00/21 
10/21 
20/00 11/00 10/10 
20/10 11/10 10/20 10/11 
20/20 11/20 10/21 
20/11 II/II 10/21 
20/21 11/21 
21/00 20/10 
21/10 20/20 20/11 
21/2020/21 
21/11 20/21 
21/21 
11/10 21/00 
11/20 II/II 21/10 
11/21 21/20 
11/2121/11 
21/21 
21/10 
21/2021/11 
21/21 
21/21 
none 
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the overall support is given by the sum 

When this sum is combined with the nine methodological types of a variable, we obtain 
the total number of possible methodological distinctions for one variable and its 
support; the number is given by the formula 

2.4. DISCRETE VERSUS CONTINUOUS 

I t is common for models of a theory to contain continuous functions or infinite 
sequences although the confirming data are highly discrete and finitistic in 

character. 
-PATRICK SUPPES 

As we saw in the previous section, the dichotomy of discrete sets versus continuous 
sets is included in the formulation of methodological distinctions at the level of 
variables and supports. Both discrete and continuous variables and supports are 
recognized in the GSPS framework. However, as far as the GSPS implementation is 
concerned, the book is almost exclusively restricted to discrete systems, i.e., systems with 
discrete variables and discrete supports. Continuous systems are covered only by 
occasional remarks and references to relevant literature. 

There are several reasons why it was decided to restrict this book to discrete 
systems. The primary reason is that the scope of the GSPS is so large that it is not 
feasible to cover all aspects of its implementation in a book of reasonable size. In any 
event, the principal aim of this book is to describe the GSPS architecture and not its 
implementation. The GSPS implementation should thus be covered not for its own 
sake, but for the purpose of reinforcing the architectural description. In this sense, it is 
preferable, in my opinion, to include in the book a thorough description of a possible 
implementation of some meaningful and coherent subset of the GSPS rather than to 
cover the whole implementation spectrum superficially. The class of discrete systems 
and the associated problems represent such a desirable coherent subset. 

Although continuous systems may seem equally suitable for illustrating the GSPS 
architecture, I would like to argue that discrete systems are preferable for a number of 
reasons, including the following: 
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(i) Regardless of whether one believes the world is basically discrete, continuous, 
or hybrid and regardless of the quality of the instruments used, the fact remains that 
most, if not all, observations are associated with some unavoidable finite error. The 
value of the error imposes some specific finite upper bound upon the resolution level 
involved in data gathering through a particular observation channel. This implies that 
data are always discrete regardless of philosophical beliefs or the state of technology. 

(ii) When empirical considerations, as described in (i), are not dominating and the 
use of a continuous variable is desirable, an appropriate finite resolution level can 
always be chosen which defines a discrete variable approximating the desirable 
continuous variable as closely as one wishes; the same discrete approximations are, of 
course, possible for continuous supports as well. This point has clearly been 
demonstrated by Greenspan [GRl-5], who shows that classical as well as relativistic 
physics can be fully reformulated in terms of discrete variables and that this new 
formulation yields results that can be made as close as desirable to the results obtained 
through the traditional formulation based on continuous variables and differential 
equations. 

(iii) While discrete variables (and supports) can always be defined in such a way as 
to approximate continuous variables to any accuracy desired, continuous variables are 
applicable only to certain kinds of attributes. In particular, sets of appearances of the 
applicable attributes must have structures isomorphic with the set of real numbers. This 
is an extremely severe restriction. The applicability of discrete variables and supports is 
thus considerably broader than that of their continuous counterparts. 

(iv) If a real-world phenomenon can be described by continuous variables and 
supports, usually in terms of a set of differential equations, it is rare that methods of 
continuous mathematics can actually be used to handle such descriptions. Differential 
equations describing real-world phenomena are usually such that either they cannot be 
solved analytically (e.g., most nonlinear differential equations) or their analytical 
solution is difficult. Hence, it is either necessary or convenient to use numerical methods 
and digital computers for their solution; this obviously requires that the continuous 
variables and supports be converted to appropriate discrete counterparts. This is 
discussed by Greenspan [GRl]: 

It is usual, first, in the development of scientific knowledge, to have experimentation, 
which results in discrete sets of data. Theoreticians then analyze these data and, in 
the classical spirit, infer continuous models. Should the equations of these models be 

nonlinear, these would be solved today on computers by numerical methods, which 
results again in discrete data. Philosophically, the middle step of the activity 
sequence is inconsistent with the other two steps. Indeed, it would be simpler and 
more consistent to replace the continuous model inference by a discrete model 
inference, and this can be accomplished by denying the concept of infinity .... The 
concept of infinity and the consequential concepts of limit, derivative, and integral 
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are reasonable for the pure mathematical study of real numbers and real functions, 
but are not reasonable for the modeling of physical concepts and phenomena. 
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(v) Continuous variables and supports involve a number of purely mathematical 
difficulties and restrictions which not only result in rather high pedagogical demands 
but, more importantly, obscure the real issues. 

(vi) It can clearly be observed that the dominance of the methods of continuous 
mathematics, characterizing the precomputer era, has been declining steadily since the 
appearance of the first commercial general-purpose digital computers in the 1950s. The 
analytic power of the calculus has become more and more outweighed by the steadily 
increasing computational power of digital computers. This will likely continue and, as a 
result, systems based on discrete variables will eventually dominate the field of systems 
research. 

(vii) While the precision of continuous man-made systems (such as analog 
computers or regulators) is limited and cannot be increased beyond a certain level by 
any means, the precision of discrete man-made systems (digital computers, regulators, 
communication systems, etc.), is basically a matter of cost. 

(viii) While man-made discrete systems may, by their very nature, be designed with 
various self-correcting features, no self-correction is possible for continuous man-made 
systems. 

(ix) Discrete functions (expressing, e.g., dependencies of variables on their 
supports or on other variables) are more flexible than their continuous counterparts in 
their mode of representation. This issue is well argued by Andrew Barto [BA3]: 

... it is perfectly feasible to use symbolic expressions to define discrete functions . 

. . . It is also possible to define operators on discrete functions in terms of symbolic 
manipulations of these formulae. Thus turning to discrete functions one does not 
give up the possibility of concise symbolic expression. One gains, however, the 
advantage that using symbolic expression is not the only means of completely 
specifying functions as it is in the continuous case. Discrete functions can be 

completely defined by listing their values, e.g., storing the values in a computer so 
that "addresses" correspond to function arguments and "contents" correspond to 
function values, or by providing an algorithm whose input is a function argument 
and whose output is the corresponding value .... The primitive operations used in 
specifying algorithms (e.g., looping and conditional branching) permit the concise 
definition of functions which are impossible or very awkward to express by 
conventional algebraic means. 

In addition to all these essential reasons for choosing discrete systems to illustrate 
some aspects of the GSPS implementation, there is also one practical reason for this 
choice. Continuous systems are much better developed and represented in the literature 
than discrete systems and it is thus more efficient to cover them indirectly by 
bibliographical notes and references. 
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2.5. IMAGE SYSTEMS AND SOURCE SYSTEMS 

With only a single meter, there cannot be any science at all ... 
-Yo M. M. BISHOP, S. E. FIENBERG, AND P. W. HOLLAND 

Attributes, specific variables and general variables, as well as backdrops, specific 
supports and general supports are components of three primitive systems-an object 
system, specific image system, and general image system, respectively-that form, 
together with the relationship among them, a source system. One ofthe three primitive 
systems-the object system-is conceptually introduced in Section 2.1 and formally 
defined by Eq. (2.1). The remaining two primitive systems have the same form as the 
object system, but their components are variables and supports rather than attributes 
and backdrops. 

.. Let i and I denote a specific image system and a general image system, 
respectively. Then, 

i = ({(Vi' V;lliENn}, {(W j , W)IjENm}), 

1= ({(vi,vi)liENn }, {(Wj , W)jjENm }), 

where all symbols have the same meaning as defined in Section 2.2 

(2.11) 

(2.12) 

A relationship among the three primitive systems-O, i, I-must now be defined. 
For the sake of notational simplicity, let us introduce a convention that, for each i ENn 

and eachjENm, attribute ai and variables Vi' Vi correspond to each other and, similarly, 
backdrop bj and supports wj , Wj correspond to each other. 

The relationship between the object system and the specific image system is 
expressed by an overall observation channel that consists of individual observation 
channels, one for each attribute or backdrop in the object system. Let (J denote a crisp 
overall observation channel. Then, 

(J = ({ (Ai' Vi' 0i)1 i ENn, 0i is defined by Eq. (2.2) and must be homomor
phic with respect to properties in Ai, Vi}' {(B j , Wj , w) liE N m, Wj is 
defined by Eq. (2.3) and must be homomorphic with respect to 
properties in Bj , Wj }), (2.13) 

where all symbols have the same meaning as defined in Section 2.2. 
A fuzzy overall observation channel, say e, is obtained when 0i in Eq. (2.13) is 

replaced by 0i defined by Eq. (2.9). Functions Wj may also be replaced by Wj defined by 
Eq. (2.10), but this is not considered in the GSPS framework for reasons discussed in 
Section 2.2. 

The relationship between the specific and general image systems is expressed by a 
set of exemplifications/abstractions, one for each variable and support in the image 
systems. Let this set be called an exemplification/abstraction channel and let it be 
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denoted by iff. Then, 

tC = ({ (Vi' Vi' ei ) liE N n' ei is defined by Eq. (2.4} and must be isomorphic 

with respect to properties in Vi' VJ, { (Wj, Wj' B) Ii E N m' B j is 
defined by Eq. (2.5) and must be isomorphic with respect to 
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properties in Wj' WJ). (2.14) 

An observation channel from the object system directly to the general image system 
can also be considered. This channel, however, can be derived from the two channels 
defined by Eqs. (2.13) and (2.14). It consists of triples (Ai' Vi,Oioei-1) and 
(Bj' Wj' WjOBj-1), where the symbol ° denotes the operation of composition ..... 

The source system can now be defined as the quintuple 

S = (0, i, I, (I), iff). (2.15) 

These five components of source systems are shown in Figure 2.3, together with their 
relationships to the premethodological considerations (the investigator, object and 
purpose of investigation, etc.) and to epistemologically higher types of systems. The 
figure also summarizes the main methodological issues associated with the source 
system: 

1. On one side, the source system represents interactions with the real world. They 
are mediated through the object system ° and observation channel (I). On the other side, 
the source system is linked to the GSPS through the general image system 1 and 
exemplification/abstraction channel iff. These two components (I and tC) represent the 
interface between a particular discipline and the GSPS (as discussed in Section 1.2 and 
illustrated in Figure 1.2). This interface, which occurs at the lowest epistemological level 
of systems, is important since any interface at a higher epistemological level is based 
on it. 

2. The GSPS conceptual framework is basically a language that is tailored to the 
description of significant systems problems. In its own domain, the GSPS is restricted to 
syntactic aspects of systems problem solving. They are represented by the notion of 
general image systems of various methodological distinctions and their epistemologi
cally higher counterparts. The GSPS implementation can thus be developed and 
described solely in terms of general image systems and their various extensions at higher 
epistemological levels. When the GSPS is used in a particular inquiry or some other 
activity, the relevant semantic aspects are introduced through i, 0, (I), and & of the 
source system. They consist of the dual processes of abstraction and interpretation. 
Abstraction is associated with functions 0i' Wj' ei- 1, and Bj- 1; interpretation is 
characterized by functions e i, Bj , and partitions 0i- 1 = Adoi' wj- 1 = Bj/wj • Pragmatic 
aspects are introduced at the premethodological level. They include the purpose and 
constraints of particular activities (scientific inquiries, systems design activities, etc.). 
Some of these pragmatic aspects are reflected in the extracted formulation in the GSPS 
language. 
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Figure 2.3. Conceptual elements involved in defining a source system on an object. 
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3. The source system, as the name suggests, is a source in two different respects. In 
one respect, exemplified by scientific investigations, it is a source of empirical data, i.e., a 
source of abstract images, expressed in the GSPS language, of some real-world 
phenomena. In another respect, exemplified by activities such as engineering design, it is 
a source of interpretations of abstract data that are either defined by the user or derived 
from within the GSPS. 

As hinted in Section 1.3, two kinds of variables (or the corresponding attributes) 
may be usefully distinguished when a system is defined on an object. They are referred to 
as input and output variables (or attributes). In the following characterization of the 
difference between input and output variables, all aspects discussed are equally 
applicable to specific and general variables as well as to the corresponding attributes. 

The dichotomy of input variables versus output variables emerges from pragmatic 
considerations. It expresses basically the user's point of view, which, in turn, is 
influenced or, in some cases, determined by the purpose for which the system is defined. 
Output variables of a source system are viewed by the user as variables whose states at 
the relevant support instances are determined from within the system, while the input 
variables are viewed as those determined from without. All factors that contribute to the 
determination of input variables are usually covered under the name "environment of the 
system." 

~Let systems with input and output variables be called directed systems and let those 
whose variables are not classified in this way be called neutral systems. According to this 
terminology, the source system, defined by Eq. (2.15), as well as its three primitive 
systems (0, i, I), are neutral systems. To modify them into directed systems, each 
variable (or attribute) in their definitions must be declared either as an input variable or 
as an output variable (input or output attribute). Let this be done, say for system I, by 
defining a function 

u: N" ~ {O, I}, 

such that u(i) = 0 or u(i) = 1 are taken as declarations that variable Vi is an input 
variable or output variable, respectively. Let each n-tuple 

u = (u(I), u(2), ... , u(n», 

by which a particular input/output status is declared for each variable in the system, be 
called an input/output identifier. There are clearly 2" possible input/output declarations 
for n variables, each represented by one input/output identifier u. 

The same input/output identifier is, of course applicable to variables Vi and 
attributes ai as well. The definition of each of the three primitive systems-O, i, I-can 
thus be easily modified to a definition of its directed counterpart by adding to it a 
particular input/output identifier. Let symbols of neutral systems be modified for their 



www.manaraa.com

58 CHAPTER 2: SOURCE AND DATA SYSTEMS 

directed counterparts by adding a caret to each of them. Then, 

0= ({(ai,Ai)lieNn}, D,{ (bj , Bj)ljeNm }), 

i, = ({(Vi' V;)lieNn }, D, {(Wi' U--)ljeNm}), 

j = ({ (V;, V;) I i e N n}, D, {(W j , Uj)lj e N m}), 

(2.16) 

(2.17) 

(2.18) 

where 0, i, I are the directed counterparts of the primitive neutral systems 0, i, I, 
respectively. The directed source system is then defined by the quintuple 

S = (0,1, I, &, C). ... (2.19) 

The difference between input and output variables is not well exhibited at the level 
of source systems. It becomes more apparent at higher epistemological levels, where 
various kinds of relationships among the variables are described. Since input variables 
are not considered as being determined from within the system, their states are viewed as 
conditions that are determined by the environment and have some influence upon the 
output variables. Relationships among variables of directed systems are thus expressed 
in terms of conditional propositions of the general form "if x, then y," where x is an 
overall state of input variables (determined by the environment) and y describes some 
property of the system. This contrasts with neutral systems, whose relationships among 
variables are described by simple propositions of the general form "it is true that y," 

where y again describes a property of the system. Input variables of directed systems 
may be influenced by their output variables as well, but such influence, if any, is not 
mediated through the system. It is mediated through the environment, as illustrated in 
Figure 2.4a. Properties of input variables of a directed system are thus not a subject of 
investigation within the context of that system. 

There are two kinds of degenerate directed systems: 

1. Directed systems with no output variables (Figure 2.4b), i.e., systems with 
D = (0,0, ... ,0). These systems are methodologically vacuous. Indeed, each such 
system contains only input variables which, by definition, are fully determined by its 
environment and thus their properties cannot be expressed and investigated within the 
system itself. Hence, there is nothing in the system to be described and investigated. Any 
proposition that can be formulated within the system is meaningless since it contains 
only a condition but no consequent. Directed systems of this kind are excluded from the 
GSPS framework as methodologically meaningless. There are thus only 2n - 1 
meaningful input/output declarations for n variables. 

2. Directed systems with no input variables (Figure 2.4c), i.e., systems with 
D = (1, 1, ... , 1). These systems are methodologically sound since meaningful pro
positions can be formulated within them. However, the propositions cease to be 
conditional because there are no input variables in the systems that would provide the 
conditions. As such, the propositions become essentially the same as those formulated 
within the comparable neutral systems, i.e., neutral systems with the same sets of 
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INPUT VARIABLES 

{ vii iENn• u (i)=O } 

DIRECTED ENVIRONMENT 
SYSTEM S OF SYSTEM S 

{ vijiEN n, U (i)=l} 

OUTPUT VARIABLES 

(a) 

DIRECTED ENVIRONMENT 
SYSTEM S OF SYSTEM 5 

bliENn} 

u=(l,l, ... ,l) 

OUTPUT VARIABLES 

(c) 

INPUT VARIABLES 

DIRECTED 
SYSTEM 5 

{VdiENn} 

u=(O,O, ... ,O) 

ENVIRONMENT 
OF SYSTEM S 

(b) 

NEUTRAL 
SYSTEM S 

(d) 

{ vii iEN n } 

VARIABLES 

Figure 2.4. Methodological distinction of directed versus neutral source systems. 
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variables, supports, and the other components. However, there is a subtle difference 
between the two kinds of systems, as illustrated in Figures 2.4c, and 2.4d. While all 
variables in these degenerate directed systems are declared as output variables, those in 
the corresponding neutral systems are undeclared. As such, they are initially left 
uncommited and, if necessary or desirable, can be converted into appropriate directed 
systems at some later stage of their investigation. Note that, although these two kinds of 
systems are conceptually distinct, they are equivalent in the sense that either can be 
converted into the other simply by including or excluding u. 

Properties of the environment of a directed system may not be known and, 
consequently, states of its input variables may be unpredictable within the support set. 
However, this lack of knowledge has no effect on the system itself since states of input 
variables participate in propositions about the system only as conditions. In some cases 
of directed systems, the determination of states of their input variables by the 
environment may be completely known. Such knowledge still has no effect on the 
description of the system, but it can be utilized in some problems that involve the 
system. There are also cases in which the input variables are completely controlled by 
the investigator, i.e., he represents the environment. 

No environment is recognized for a neutral systems (Figure 2.4d). When a neutral 
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system is replaced by a directed system, an environment is introduced and, provided that 
u f (1, 1, ... , 1), some information included in the neutral system is moved into the 
environment. Hence the resulting directed system contains less information than the 
original neutral system. A neutral system with n variables can be replaced by 2"-1 
directed systems, each represented by one n-dimensional input/output identifier u, but 
the one with no input variables (Figure 2.4c) is a rather trivial replacement. We may thus 
conclude that there are 2n-2 nontrivial ways in which a neutral system can be replaced by 
a directed system. 

The distinctions between neutral and directed systems and between crisp and fuzzy 
observation channels are two additional methodological distinctions recognized for 
source systems. They are independent of each other and of the distinctions based on 
properties in state and support sets. Each source system can be either neutral or 
directed, and observation channels of its variables can be all crisp, all fuzzy, or mixed. 
Hence, the new distinctions introduce 2 x 3 = 6 new possibilities. It must also be 
observed, however, that each source system may contain variables of different 
methodological types (in the sense of Figure 2.2a). 

Let the total number of methodological distinctions recognized at the source 
system level be denoted by # S. Then, under the realistic assumption that the number of 
supports does not exceed 9 (m ::; 9), we get 

(2.20) 

where k = min (9, n). 
If source systems with variables and supports of mixed methodological types were 

not allowed, the number of methodological distinctions would become 6 x 9 x 9 = 486. 
If, in addition, only discrete variables were considered, the number would reduce 
to 6 x 5 x 5 = 150. This is the range within which some implementation aspects of the 
GSPS are illustrated in this book. 

Methodological distinctions recognized for source systems are important since 
they are applicable to all epistemologically higher types of systems. Let us illustrate 
them, together with other aspects of source systems, by the following two examples. 

Example 2.3. Let the object of investigation be a stand of northern hardwood 
timber in western New York. Foresters usually mark trees for selective harvests at fairly 
regular intervals. The two main purposes of marking trees for cutting are to maintain or 
improve the overall quality of the woodlot and to remove timber of sufficient value to be 
economically attractive to the land owner and the timber processor. The aim of defining 
a source system on this object is to determine characteristics of trees that are marked for 
cutting, evaluate them critically, and develop more desirable and precise guidelines for 
marking trees in the future. 

The backdrop in this example consists of a population of trees in the stand that are 
selected for the investigation. Assume that each tree investigated is labeled by an integer. 
Then, function w is one-to-one and e is the identity function. 
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Assume that seven attributes are selected on the object for this investigation. They 
are described and the corresponding variables defined for them in the following 
paragraphs. 

Iree species: attribute a l' Only four classes of all species recognized in the stand are 
distinguished in the investigation. Hence, a specific variable Ii 1 with four states is needed 
to represent the attribute. Function 01' through which the variable is related to the 
attribute, is defined in Figure 2.5a. Function e l' defined in the same figure, is (as always) 
a simple relabeling scheme. No properties are recognized in sets A 1 and Viand, 

A1 (Appearances) V 1 (Specific States) V 1 (General States) 

Hard Maple 

WhiteAs~~ 
Blac k Cheriy 
Red Oak 
Soft Maple 

Yellow Bir~hh:~~:§:~~~_ 
Tulip Poplar-=- ; 
Basswood 

WhiteOa~k 
White P ine~. : 
Beec h - ~ 
Hickory 

Aspen ~====~~======== __ Heml ock _ : 
Others -

Tree Class I .... t-------1_~ 0 

Tree Class II • : 1 

Tree Class III .... II-----_:~ 2 

Tree Class IV ..... t-------1.~ 3 

(a) 

A2 02 \;2 e2 

Less than 6 in. - Sapl ings .. -
~ 6.0- 10.9 in. • Poles .. • 

~ 11.0-1 6.9 in. ~ Sm all Sawtim ber ... • 

~ 17.0-25 .0 in. - Sawtimber .. ~ 

Greater than 25.0 in . ~ Matu re Trees .. ~ 

(b) 

V2 

0 

1 

2 

3 

4 

Figure 2.5. Definitions of variables for attributes a] and a2 in Example 2.3. 
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consequently, the various properties of integers in set V I cannot be utilized in this case. 
The observation channel is crisp, i.e., it is directly represented by the function °1 , 

DBR (diameter at breast height): attribute a2 . This attribute is more precisely 
defined as the diameter of the tree stem at 4t feet above ground level on its uphill side. 
Although DBH can be measured to the nearest 0.1 inch with a tape, it is customarily 
estimated or measured to the nearest inch or even-numbered inch when estimating 
timber volumes. However, for the purposes of selecting trees for cutting, 5 categories of 
diameter size are sufficient. They are defined in Figure 2.5b, together with functions 02 

and e2 • Although some measurement uncertainty may occur near the boundaries 
between blocks of the partition A 2/e2 , the observation channel 02 can be viewed as crisp 
because this uncertainty would have little practical significance. Sets A 2 , V2 , V2 can be 
viewed as linearly ordered with metric distance and, consequently, properties of the 
integers in set V2 can be utilized if desirable. 

Merchantable height: attribute a3 . Although this attribute can be measured quite 
precisely, it is sufficient to estimate its values and distinguish three ranges: less than 24 ft, 
24 ft to 48 ft, greater than 48 ft. They can be mapped to states 0,1,2 of V3 , respectively. 
Order and distance of the integers in V3 are meaningful. 

Crown class: attribute a4 . Crown class refers to the size and position of a tree top 
relative to the tops of neighboring trees. Suppressed trees are overtopped by others, 
have relatively little influence on their neighbors, and respond poorly to release from 
competition. On the other hand, dominant trees have much influence on their 
neighbors. This attribute is considered very important as an indicator of a tree's ability 
to respond to release and develop into a desirable crop tree. The forestry profession has 
developed well-defined standards for classifying the actual appearances into four states 
of V4 : dominant, codominant, intermediate, suppressed; they can be mapped, respect
ively, to states 0, 1, 2, 3 of V4 , to preserve the linear order in V4 . 

U.S.F.S. grade: attribute as. The appearance of this attribute is dependent upon 
the number, size, and relative location of branches, branch scars, and other evidence 
which indicates the presence of knots in the wood. Four grades (states of Vs) are 
recognized which are well defined and based on standards developed by the National 
Hardwood Lumber Manufacturers' Association and the U.S.D.A. Forest Service. They 
are called U.S.F.S. Grade 1, 2, or 3, and local use; when mapped to integers 0, 1,2, 3 of 
V s, their order is preserved. 

V nsound defect: attribute a6 . The appearance of this attribute is an indicator of 
defects such as rot, crook, and sweep that reduce the amount oflumber from that which 
could be cut from a defect-free tree of the same gross dimensions. Three states are 
distinguished in V6: little or no defect, partly defective, and cull trees; they can be 
mapped to 0, 1, 2 in V6 to preserve the order. Because this variable is an estimate of 
internal defect based on external evidence, it is subject to measurement and judgement 
error by even the most competent observers. It is thus desirable to use the fuzzy 
observation channel to allow the observer to express his uncertainty in each individual 
observation. The function 0 6 is not defined explicitly in this case, but it is represented by 
the observer himself. 
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Tree marking: attribute a7. The observed tree is either marked for cutting or not. 
Let these two appearances be mapped to 1 or 0 of V7 , respectively. No property is 
recognized in V7 • 

We can see that the source system defined in this example is neutral. However, for 
the purpose of formulating rules for marking trees to be harvested, it would be 
redefined as a directed system with input variables VI through V6 and output variable V7. 

Since one of the observation channels is fuzzy while the others are crisp, the source 
system is a mixture of crisp and fuzzy variables. The support set has no recognized 
property and the state sets are of two or, possibly, three kinds: with no property, with 
linear ordering and, possibly, with both linear ordering and metric distance. 

Example 2.4. Let the object of investigation be a particular female patient 
sutTereing from anemia. The purpose of investigation is to monitor the so-called 
complete blood count (CBC) of the patient for some period of time to determine 
whether her anemic condition is improving on its own, or whether a regimen of 
treatment should be introduced. 

The support is time. Measurements were taken once a day, at 7 a.m., for the entire 
month of September, 1982. The specific support set thus consists of dates 9/1/82, 
9/2/82, ... , 9/30/82, which can be mapped to integers 0, I, 2, ... , 29 of the 
corresponding general support set so that the linear ordering and distance are 
preserved. 

Each measurement consists of determining states of the following four variables in 
a 10 cm3 blood specimen taken from the patient. Each of the variables is metric and is 
defined by a crisp observation channel 0; such that the corresponding partition od A; 
contains blocks of equal size; states of the variable assigned to appearances in the 
individual blocks by 0i represent their midpoints. The four variables are a base from 
which several other variables included in the complete blood count are derived by 
specific calculations. 

Red blood cell count: attribute at> defined as the number of red blood cells per cubic 
millimeter of whole blood and expected in the range of 4.2-5.4 million/mm3 for normal 
females. It is measured to an accuracy of 10,000 cells. State set VI consists of values 4.20, 
4.21, ... , 5.40 million/mm3; according to the previous general remark regarding the 
nature of observation channels in this example, blocks oll(x) of the partition Adol 
that are represented by these values XE VI are thus, respectively, 

4.10S ~ 011 (4.20) < 4.20S, 

4.20S ~ 011 (4.21) < 4.21S, 

S.395 ~ 011 (S.40) < S.40S. 

Specific states 4.20, 4.21, ... ,S.40can be then mapped by ell to integers 0,1, ... ,120, 
respectively, so that the ordering and distance properties of VI are preserved in the set 
of integers VI. 
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"",ite blood cell count: attribute az, defined as the number of white blood cells per 
cubic millimeter of whole blood and expected in the range of 5-10 thousand/mm3 for 
normal females. It is measured to an accuracy of 100 cells. State set V2 consists of values 
5.0, 5.1, ... , 10.0 thousand/mm3 that are represented, respectively, by the blocks 

4.95 :s; 02 1 (5.0) < 5.05, 

5.05 :s; 02 1 (5.1) < 5.15, 

9.95 :s; 02 1 (10.0) < 10.05. 

Function ez maps integers 0, 1, ... , 50 to numbers 5.0, 5.1, ... , 10.0, respectively. 
Hematocrit: attribute a3, defined as the volume of red blood cells expressed as a 

percentage of the volume of whole blood in a sample and expected in the range of 
37-47 %. It is measured to an accuracy of 1 %. State set V3 consists of values 37 %,38 %, 
... , 47 % that represent, respectively, the following blocks: 

36.5 :s; Oil (37) < 37.5, 

37.5 :s; Oil (38) < 38.5, 

46.5 :s; Oil (47) < 47.5. 

Function e3 maps integers 0, 1, ... , 10 to numbers 37, 38, ... ,47, respectively. 
Hemoglobin: attribute a4, measured by the amount of hemoglobin in grams per 

100 milliliters of whole blood and expected in the range 12-16 g/ml. It is measured to an 
accuracy of 0.01 g. State set V4 consists of values 12.00, 12.01, ... , 16.00; functions 04 

and e4 are determined in the same way as shown for attributes aJ, a2, a3. 
Several other variables are included in the complete blood count set, each of which 

is defined by a specific formula on the basis of the four introduced variables. One such 
variable, referred to as mean corpuscular volume (MCV), is defined as the average 
volume of an individual red blood cell expressed in cubic microns and is expected in the 
range of 82-92 cubic microns. It is determined to an accuracy of 1 cubic micron by the 
formula 

hematocrit x 10 
M CV = ------,-,-------,-,-:---

red blood cell count 

When a source system contains variables that are defined in terms of other of its 
variables, such as the variable MCV in the previous example, it contains artificial 
relationships among the variables introduced by the investigator. These artificial 
relationships must be clearly identified in the definition of the source system and must 
be separated from genuine relationships which emerge directly from the investigated 
phenomena. 
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2.6. OAT A SYSTEMS 

A system is a big black box 
Of which we can't unlock the locks 
And all we can find out about 
Is what goes in and what comes out. 

KENNETH L. BOULDING 
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A source system is a frame within which observations of selected attributes can be 
made. If the observation channel is crisp, any actual observation is recorded in terms of 
an ordered pair that consists of an overall support instance at which the observation is 
made and the observed overall state of the variables involved. Since only one 
observation of the variables can be made at one support instance, the set of all these 
ordered pairs is a function from the overall support set into the overall state set. This 
function constitutes data or, more precisely, crisp data. 

~ Within the GSPS, data are always assumed to be expressed in terms of the 
general supports and variables (see Figure 2.3). To formalize the notion of data, we may 
thus consider only the general image system I, as defined by (2.12). Let 

W = WI X W2 X .•. X Wm , 

V = VI X V2 X •.• X Vn • 

Then, crisp data are expressed by a function 

d:W -+ V. (2.21) 

For each overall support instance, one overall state of the variables involved is assigned 
by function d. 

While the image system I characterizes only potential states of the variables, 
function d provides information about their actual states within the delimited support 
set. When I is supplemented with d, it is thus reasonable to view this new ensemble (i.e., I 
and d) as a system at a higher epistemological level (level 1 ). Let such a system be called a 
data system and denote it by D. Then, 

D = (I, d). (2.22) 

Although this formulation lacks any semantic content, it is sufficient and convenient for 
developing and describing methodological features of the GSPS. For any particular 
application, however, the meaning of data d must be added to the formulation. This can 
be done by replacing the image system I in (2.22) by a relevant source system S. Let the 
resulting system be called a data system with semantics and denote it by "D. Then, 

"D = (S, d), (2.23) 
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w 

(a) Matrix d of crisp data d. 

W 

(b) Three-dimensional array II of 

fuzzy data d. 

Figure 2_6. Standard forms of data representation 
for discrete variables. (a) Matrix d of crisp data d. 
(b) Three-dimensional array a of fuzzy data d. 

where d is the same function as in (2.22). In this case, however, d is related to S as follows: 
when an observation characterized by 

for all i e N n (Xi denotes the presumed appearance of attribute ai' and Yi denotes the 
corresponding state of variable vJ is associated with the overall support instance we W, 
then 

d(w) = v, 

where v = (Yl,Y2, ... , Yn)eV. Depending on the problem of concern, d is actually 
determined in one of at least three different ways. First, it may result from observations 
or measurements, which is the case in all sorts of empirical investigations. Second, it may 
be derived from a higher-level system, as discussed in Chapters 3-5. Third, it may be 
defined for a specific purpose by the user, as in the problem of systems design. 

Data systems D and sD are neutral since they are defined in terms of a neutral 
image system I and a neutral source system S, respectively. A modification to their 
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directed counterparts, say 6 and 56, is trivial. It amounts to replacing I by 1 and S by S, 
respectively. Hence, 

6 = (I, d), 

56 = (S, d) 

are directed data systems, without semantics and with semantics, respectively. 

(2.24) 

(2.25) 

If variables are defined in terms of fuzzy observation channels, then each actual 
obs~rvation is recorded as an ordered pair that consists of an overall support instance, 
with which the observation is associated, and an n-tuple (h 1, h2' ... , hn ) of particular 
functions 

(2.26) 

ieNn , where hi(y) expresses the degree of certainty that y is the observed state of 
variable Vi' To formalize the notion of fuzzy data, let 

x {Vn -. [0, I]}. 

Then, fuzzy data are expressed by a function 

d:W -. V. (2.27) 

For each overall support instance we W, 

d(w) = h, 

where 

If data are fuzzy, then definitions of dat!l systems must be modified by replacing 
function din Eqs. (2.22}-(2.25) with function d. Since it always follows from the context 
which of the two cases actually occurs, it is not necessary to use different symbols for 
data systems with crisp and fuzzy data. _ 

If a source system S is included in the definition of a data system with fuzzy data, d 
and S are related as follows: when an observation associated with an overall support 
instance is characterized by 

and 

for all ieNn , where Xi denotes the presumed appearance of attribute ai' then 

hi(Yi,k) = Zi,k 
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Crisp data can be represented in a number of alternative forms. Let a standard 
form of representation for discrete variables and supports be a matrix 

d = [v. ] I.W 

whose entries Vi. ware states of variables Vi observed at overall support instances 
w (Figure 2.6a). Each column in d thus represents an overall state observed at w, and 
each row represents all observations of one variable within the support set W. If W is 
linearly ordered, columns in d should be ordered in the same way. When several 
supports are involved, such as population-time, space with more than one dimension or 
space-time, other forms of representation may be preferable. Some of them are 
introduced later for various examples. 

For fuzzy data, a standard form of representation, which is similar to matrix d, is a 
three-dimensional array 

whose entries are degrees of certainty that state ji of variable Vi is observed at support 
instance W (Figure 2.6b). Clearly, i E N n , ji E Vi' WE W, and di. ii. w ETO, 1]. Array d is 
represented by n matrices (pages, planes), one for each variable. Column W in the matrix 
for variable Vi represents a function hi' given by Eq. (2.26), that is associated with the 
observation identified by w ..... 

To illustrate various aspects of data systems and their representations, let several 
examples of specific data systems (i.e., data systems with semantics) be discussed in 
detail. 

Example 2.5. In their study of animal behavior, ethologists use methods of 
observation that disturb as little as possible the natural habitat of the animals 
investigated. One of the methods used in studying groups of animals is to make motion
picture films and determine relevant behavior sequences from them. For each specific 
kind of animal, some significant postures and movements are usually recognized. 
Ethologists often specify them by characteristic pictures supplemented by verbal 
descriptions. For instance, principal postures of herring gulls are pictorially specified in 
Figure 2.7a and are given suggestive names such as "rest," "facing away," "forward," etc. 
Each of them is also described verbally; for example: "choking begins with bending 
down over the nest (or any depression in the ground similar to a nest, such as a human 
footprint), followed by a rhythmic up-and-down movement of the head." 

The object of investigation in this example consists of two male herring gulls, 
identified as I and II. Variables are defined on the following attributes for both gulls: 

a)-type of action of gull I, 

a2-type of action of gull II. 

The attributes are observed in time. The period of observation is 90 sec. It is divided into 
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v, = V, e . = e z V = V , , 
ATIACK 0 
UPRIGHT +-+ 

GRASS 

PULLING 2 
CHOKING ..... 3 
RETREAT ..... 4 

(b) 

(a) 

t= 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

v, 
1 0 3 3 3 3 3 4 3 3 0 2 4 4 4 

v2 4 3 4 3 3 3 3 3 4 4 3 3 4 2. 4 4 4 

t= 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

v, 4 4 0 2 2 4 4 4 4 4 4 4 2 2 2 2 2 0 2 
v2 4 3 4 2 2 4 4 4 4 4 4 4 4 1 1 1 3 3 

t= 41 42 43 44 45 

v, 0 2 1 1 

:1 v, 3 3 3 3 

(c) 

Figure 2.7. Data regarding a boundary clash between two male gulls (Example 2.5). 
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intervals of2 sec, each of which represents one observation. Hence, the specific time set 
(which is the support set in this example), say t= {tI' t 2, ... , t 4S }' can be defined by the 
partition imposed on the time period of 90 sec by the observation channel: 

Os w-I(td < 2 sec, 

2 s W- I (t2 ) < 4 sec, 

tis a linearly ordered set with a metric distance; when mapped into a set of integers, 
say set T= N 45 , by the function 

the order and distance are preserved. 
Each observation of the two attributes is represented by those pictures in the film 

that correspond to the respective period of 2 sec. They are analyzed by the ethologist 
and one of several previously defined types of action (a state from state sets V I, V 2) is 
recognized for each gull. In this example, in which a boundary clash between two male 
gulls is investigated, the same five types of action are sufficient for each attribute (i.e., 
VI = V2 ); their names are listed in Figure 2.7b, together with their integer labels 
(elements of general state sets VI' V2 ). The actions called "upright" and "choking" are 
two of the basic postures defined in Figure 2.7a. "Grass pulling" is defined as "pecking 
violently at the ground, uprooting plants and tossing them sideways with a flick of the 
head." The remaining two actions-"attack" and "retreat"-are well characterized by 
their names. A data matrix obtained from an actual motion-picture film is shown in 
Figure 2.7c, where tET and VI,I' V2,/E Vd = V2). 

The data system defined in this example is a neutral system with semantics. Its 
variables are discrete and are supported by (observed in) time. The support set (time set) 
is linearly ordered and metric. The data are crisp. 

Two remarks should be made about this example. First, the two identical 
observation channels 

(i = 1,2), 

where Ai denotes the presumed set of all possible appearances of a gull, are represented 
by the ethologist himself and cannot be mathematically defined. They are defined by the 
combination of pictorial and verbal characterizations. 

Second, each observation (one column in the data matrix) is a summary (made by 
the ethologist) of what happened during the respective period of2 sec. This is somewhat 
problematic, since actions ofthe gulls (in terms of the types recognized in the state set) 
do not necessarily begin and stop according to the predefined time scale. It seems more 
adequate in this kind of investigation to define the time set timplicitly, by changes in 
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states of the variables, rather than explicitly. Time set T is defined implicitly by the 
following rule: the whole period of observation (90 sec in our example) is partitioned 
into time intervals during which none of the variables (two variables in our case) changes 
its state; when at least one variable changes its state, one time interval terminates and a 
new one begins. Ifit is important to keep information about durations of the individual 
actions, a new variable can be introduced by which the duration of each of the implicitly 
defined time intervals is measured (with a desirable precision) and recorded as part of 
the data. The implicit definition of time sets (with or without a supplementary variable 
that expresses durations of the implicitly defined time intervals) is often more adequate 
than any explicit definition. It is also meaningful and frequently desirable for variables 
whose support is space of some sort. 

Example 2.6. Typical objects of investigations in musicology are musical com
positions. Let the object in this example be a modem blues tune. Its score, which is given 
in Figure 2.8a, consists of two parts: a melody and a harmony. While the melody is 
defined in standard musical notation, the harmony is expressed in terms of the so-called 
"fake book" notation, frequently used by jazz musicians. To define a meaningful system 
on this blues tune (or any musical composition), three kinds of attributes have to be 
considered: pitch, rhythm, and harmony. All of them change in time. Relevant time 
intervals can be defined in terms of the duration of the shortest note in the composition, 
say duration Ilt. In this example, At represents the duration of the one eighth measure. 
Time (as a support) can be defined explicitly or implicitly. When defined explicitly, 
elements of the corresponding time set T would be labels of time intervals [0, Ilt), 
[Ilt, 2At), etc., and would be mapped to an appropriate set of integers of the general time 
set T (e.g., 1, 2, ... , respectively, to preserve the order and distance). When defined 
implicitly, the time intervals represented by Twould be determined by durations of the 
individual notes in the melody. In this example, the implicit definition of time seems 
preferable and is adopted. 

The three attributes-pitch, rhythm, and harmony-can be represented by 
variables in a number of different ways. Pitch of a single melody, for example, can be 
represented by one variable, say variable VI' as shown in Figure 2.8b for the pitch range 
of our melody. However, it can also be represented by two variables, one of which would 
distinguish octaves, while the other would distinguish the 12 standard levels in a 
chromatic scale; or it can be represented by three variables, one for octaves, one for the 
seven basic levels (a, b, ... , g) in each octave, and one for the modifiers band # . 
Rhythm of a melody is a time-oriented attribute and, consequently, the definition of a 
variable by which it is represented depends on the definition of the support time. When 
the support time is defined implicitly (as in our example), the variable for rhythm, say 
variable v2, must identify durations of the individual tones in the melody. This is done 
by multiples of At (or the 1/8 measure) as shown in Figure 2.8b; the observation channel 
02 by which time intervals [0, Ilt), [1lt,21lt), ... , [4At, SAt) are introduced is obvious. 
As far as harmony is concerned, let a general variable for harmony, say variable V3' be 
related to the corresponding specific variable V3 by the abstraction channel specified in 
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t= 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

v, 8 10 13 17 17 13 8 10 13 16 16 13 8 10 13 17 17 13 

v, 1 1 1 1 3 1 1 1 1 3 1 3 1 

v, 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

8 10 8 11 0 13 18 19 18 0 13 19 18 17 13 11 8 5 
1 1 5 3 1 1 3 1 2 

0 0 0 2 2 2 2 2 2 2 2 2 2 2 0 

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

5 6 7 8 8 10 8 15 15 12 8 10 8 15 15 12 8 10 

2 2 2 5 1 1 1 3 1 1 3 1 1 1 

0 0 0 0 0 0 0 3 3 3 3 3 3 2 2 2 2 2 

119 120 121 122 123 124 125 126 127 128 

55 56 57 58 59 60 61 62 63 64 65 66 67 

8 13 11 10 9 8 6 5 1 0 8 10 13 8 10 12 13 0 
1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 4 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(c) 

Figure 2.8. Data system representing a blues tune (Example 2.6). 

Figure 2.8b. The observation channel 0 3 is in this case represented by the standard 
definitions of the "fake book" harmonic symbols (elements of V3). Observe that 
harmony could also be represented by two variables, one for the base note (C, F, G) and 
one for the chord type (C versus C7). 

If the variables representing pitch, rhythm, and harmony are defined as shown in 
Figure 2.8, the blues tune is fully described by the data matrix in Figure 2.8c. That part 
of the tune which is repeated is represented in the data matrix by columns with two time 
labels. 

Example 2.7. For the purpose of designing a traffic light system, a periodic data 
matrix that specifies the required sequence of lights at an intersection is given in 
Figure 2.9a. Specific variables describing the lights for traffic bound north-south, 



www.manaraa.com

74 CHAPTER 2: SOURCE AND DATA SYSTEMS 

1st Period 2nd Period 

II 12 h f.1 Is 16 h is I!I flO ill 1)2 

NS g g g y r g g g y r 

NE a 1/ 1/ 11 11 n a n 11 II 11 n 

S;'\ g Y g Y 
SE a a a n II II a a a n 11 II 

WE=EW r r g y r g y 

(a) 

-1! Lk -1! L -1l L -1i L ~ L -' L 

,tt, - -, til -, Ii ,II , I I I 

(b) 

Figure 2.9. Defined activity of traffic lights at an intersection (Example 2.7). 

south-north, west--east, and east-west are denoted by NS, SN, WE, and EW, 
respectively; each of these variables acquires three states: red, yellow, green, abbreviated 
by r, y, g, respectively. The left-turn arrow for traffic bound north-east is denoted by 
NE, and the right-turn arrow for traffic bound south--east is denoted by SE. These 
variables acquire two states: the arrow is either lighted or not, abbreviated as a and n, 
respectively. The support is time. Time set Tconsists of six labels t 1, t 2, ... , t 6, which 
represent the following partition of the time interval by 90 sec imposed by the 
observation channel: 

0~w-1(td< 15, 

15 ~ w- 1 (t 2 ) < 25, 

25 ~ w- 1 (t3 ) < 50, 

50 ~ w- 1 (t4 ) < 60, 

60 ~ w- 1 (ts) < 80, 

80 ~ w- 1 (t6 ) < 90. 

The actual situations at the intersection for the time intervals labeled by t 1, t 2, ... , t6 are 
schematically illustrated in Figure 2.9b. The data system is completely determined by 
specifying one period of the data. It is trivial to replace the data matrix in Figure 2.9a by 
a data matrix based on general variables; since no properties are recognized in the state 
sets, their mapping to appropriate sets of integers is arbitrary. 

Example 2.S. Sea-ice cover is one of the attributes that have been monitored in 
climatological studies. Such attributes are usually observed in space and time. Data in 
this example, derived from satellite imagery, regard percentage of ice cover in the 
Southern Ocean in the latitude range from 50° to 76° and for a 1 year period. It is 
assumed that six states representing the percentage of ice cover are used in the 
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observation channel 0: no cover, low, medium, high, or very high percentage (but less 
than 100%), and full cover (Le., 100% cover); they are labeled by integers 0,1, ... ,5 so 
that the linear order is preserved. The states are defined in terms of the following 
partition of the interval [0, 100 %J: 

50 <o-l(high %):S75%, 0- 1 (no cover) = 0%, 
0< 0- 1 (low %):S 25%, 

25 < 0 - 1 (medium %) :S 50 %, 
75 < 0- 1 (very high %) < 100%, 

0- 1 (full cover) = 100%. 

SPACE-----....; ... ~I 

TIME 

j Jan. 
Feb. 
March 

t April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Jan. 
Feb. 
March 
April 
May 
June 
July 
Aug. 
Sept. 
Oct. 
Nov. 
Dec. 

Degrees of latitude 
50 52 54 56 58 60 62 64 66 68 70 72 74 76 

0 0 0 1 1 1 1 1 2 3 3 4 4 4 
0 0 0 0 1 1 1 1 2 2 3 3 3 4 
0 0 0 0 0 1 1 1 2 2 3 4 4 4 
0 0 0 0 0 1 1 1 2 3 4 4 5 5 
0 0 0 0 1 1 1 2 3 4 4 5 5 5 
0 0 0 1 1 2 2 3 4 4 5 5 5 5 
0 0 1 1 1 2 3 4 4 4 5 5 5 5 
0 1 1 1 2 3 4 4 4 5 5 5 5 5 
0 1 1 1 2 3 4 4 5 5 5 5 5 5 
0 1 1 1 2 3 3 4 4 5 5 5 5 5 
0 1 1 1 2 2 2 3 4 4 5 5 5 5 
0 0 1 1 1 2 2 2 3 4 4 4 5 5 

(al Pacific sector of the Southern Ocean. 

Degrees of latitude 
50 52 54 56 58 60 62 64 66 68 70 72 74 76 

0 0 0 0 0 1 1 1 1 2 4 4 4 4 
0 0 0 0 0 0 0 1 1 1 3 4 4 3 
0 0 0 0 0 0 0 0 1 1 3 4 4 4 
0 0 0 0 0 0 0 1 1 2 4 5 5 5 
0 0 0 0 0 1 1 1 2 4 4 5 5 5 
0 0 0 0 0 1 1 2 3 4 5 5 5 5 
0 0 0 0 0 1 1 3 4 5 5 5 5 5 
0 0 0 0 0 1 2 3 4 4 5 5 5 5 
0 0 0 0 1 1 1 3 4 5 5 5 5 5 
0 0 0 0 1 1 1 3 4 5 5 5 5 5 
0 0 0 0 0 1 1 3 4 4 5 5 5 5 
0 0 0 0 0 1 1 2 2 3 4 5 5 5 

(b) Atlantic sector of the Southern Ocean. 

Figure 2.10. Satellite-derived five-year monthly averages (1973-1977) of sea-ice cover in the 
Southern Ocean (Example 2.8). (a) Pacific sector of the Southern Ocean. (b) Atlantic sector of the 
Southern Ocean. 
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There are two supports in this case: time and one-dimensional space that has the 
meaning oflatitude. Time is expressed in months of one year and is defined in the usual 
way of partitioning the whole period of one year into 12 time intervals. Latitude is 
measured to an accuracy of 2° and is also defined in the usual way. 

Two data sets are given in Figure 2.10, one for the Pacific sector and one for the 
Atlantic sector of the Southern Ocean. This means that two different data systems are 
really defined in this example. The data entries are actually based on monthly averages 
over a period of five years (1973-1977). Each of the data sets is represented in a 
convenient matrix form. Each row in the matrix represents a "snapshot," i.e., a one-time 
observation of the ice cover at various latitudes; each column represents the 
development of the ice cover situation at one latitude over the whole year. If more than 
one variable were involved, each entry in the data matrix would contain a tuple 
consisting of a particular state for each variable (i.e., an element of V). 

Example 2.9 Let the source system defined in Example 2.4 (complete blood count) 
be extended by one additional support-a population of patients suffering from 
anemia-everything else being the same. Then, data can be represented conveniently by 
the matrix form shown in Figure 2.11. Each entry of the matrix is a quadruple consisting 
of a particular overall state of the four variables, observed on a particular day for a 
particular patient. This example illustrates a systematic development of medical data for 
further processing. 

Example 2.10 To illustrate fuzzy data, let two variables from Example 2.3 (a stand 
of hardwood timber) be considered. They are: merchantable height (v 3 ) and unsound 
defect (v 6). Assume that both of them are defined by fuzzy observation channels which, 
however, are not defined explicitly, but are represented by the observer himself. 
Everything else is the same as in Example 2.3. A fuzzy data array would then have the 
form illustrated in Figure 2.12a. Each entry in the array expresses the certainty (of the 
investigator) that a particular tree (labeled by an integer w) is characterized by a 

DAY 1 DAY 2 ..... 

PATIENT 1 
1 

4.28 6.2 41 14.05\ 14.25 5.8 44 13.951 ..... 

PATIENT 2 
1 

5.21 5.1 4815. 21 1 15.22 5.1 48 15.251 ..... 

PATIENT n 1 4.36 7.8 3214.981 1 4.36 7.9 3514.951 ..... I 

Figure 2.11. Medical data (Examples 2.4 and 2.9). 
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W= 2 3 4 5 6 7 8 

V, {; 

0..2 0..8 0..0. 0..0. 1.0. 0..0. 0..5 0..0. 
0..9 0..4 0..7 0..0. 0..0. 0..6 0..5 1.0. 

0..0. 0..0. 0..3 1.0. 0..0. 0..5 0..0. 0..0. 

V. H 
0..3 0..9 0..0. 0..4 1.0. 0..0. 0..7 0..2 
0..7 0..3 0..0. 0..6 0..0. 0..5 0..3 0..9 
0..2 0..0 1.0. 0..4 0..0. 0..5 0..1 0..0. 

(a) Fuzzy data. 

W= 2 3 4 5 6 7 8 

V3 0. 1 2 0. 1 ... ( 
v. 0. 2 0. 2 0. . .. 

(b) Comparable crisp data. 

Figure 2.12. Illustration of fuzzy data (Example 2.10). 

particular state of one of the variables. The three-dimensional array offuzzy data can be 
compared with the data matrix in Figure 2.12b, which is based on the assumption that 
both of the variables are defined in terms of crisp observation channels. 

Let two methodological distinctions be recognized for data systems, in addition to 
those introduced for source systems. The first one is a distinction between completely 
specified data and incompletely specified data. The data are called completely specified if 
and only if all entries in its data matrix or array are specified; otherwise it is called 
incompletely specified. Let two types of incompletely specified data be further 
distinguished: 

I. all cases in which some data within the defined support set are not available (as in 
some experimental and historical investigations); 

ii. all cases in which it does not matter what some of the data are (as in some 
problems of systems design, where such instances are usually referred to as don't 
care conditions). 

When data are incompletely specified, individual state sets must be supplemented by 
some convenient (standard) symbols reserved for the identification of the "not 
available" or "don't care" entries in the data arrays. To deal with these entries, the GSPS 
must be equipped with appropriate methodological capabilities. 

The second methodological distinction for data systems is applicable only to those 
systems whose overall support sets are linearly ordered. It permits us to speak of 
periodic data, i.e., data that repeat in the same order when the support set is extended. 
Instances of periodic data are in Examples 2.6 and 2.7 
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Source and data systems are epistemological types of systems that are predomi
nantly of an empirical nature. As such, their relationship to the various traditional 
disciplines of science and other areas is much stronger than that of systems types at 
higher epistemological levels, which are predominantly of a theoretical nature. Indeed, 
to define a source system on an object, so that the purpose for which it is defined is well 
served, requires considerable knowledge and experience in a particular discipline. There 
are usually many ways in which a source system can be defined and it is the principal 
challenge of the investigator to select one within which relevant questions can be best 
formulated and dealt with. Once a source system is defined, special skills, yoowledge, 
and instruments are again required to obtain meaningful data. The main purpose of the 
diverse examples discussed in this chapter is to illustrate some of the issues involved in 
the process of defining source systems and obtaining data for them. 

NOTES 

2.1. The distinction between an object and a system defined on the object is often not made in 
the literature. This lack of terminological precision has been the source of much confusion. In 
some instances, the terms "real system" and "model" are used for our concepts of object and 

system, respectively. This terminology is unfortunate since, according to it, systems science would 
actually deal with models rather than systems. I believe that it is more appropriate to use the term 
"system" exclusively for any operationally described abstract representations of manageable sets 
of attributes and backdrops. The term "model" can be then reserved for the various kinds of 
similarity relationships between pairs of comparable systems, i.e., systems of the same 

epistemological type (as discussed in Chapter 8). 

2.2. In many instances, the problems of defining source systems on objects of interest and 

gathering data for them involve various issues of the theory and practice of measurement. Such 
issues cannot be separated from the individual traditional disciplines of science. As such, they are 

outside the scope of the GSPS and, consequently, are not covered in this book. As supplementary 

reading, several books devoted to general aspects of measurement are recommended [ELl, KR I, 
PFI, TOll 

2.3. The theory offuzzy sets was introduced by Lotfi Zadeh in 1965 [ZA3]. Its development 

since the publication of Zadeh's seminal paper has been dramatic. A survey of the status of the 
theory and its applications in the late 1970s is well covered in a book by Dubois and Prade [DUll 
Current contributions to the theory of fuzzy sets are scattered in many journals, but the most 
important source is the specialized journal Fuzzy Sets and Systems (North-Holland). 

2.4. The syntactic, semantic, and pragmatic aspects that are recognized in source systems 
(Figure 2.3), can be briefly characterized as follows. The syntactic aspects are those which involve 
the relationships among signs, such as rules of constructing sentences from words, but without 
any reference to the meaning and use of the signs (words, sentences). The semantic aspects involve 
the relationships of signs to things other than signs by which a meaning is given to the signs (word, 
sentences), but without any reference to their use. The pragmatic aspects involve the relationships 

of signs to things other than signs by which some use is ascribed to the signs. These three kinds of 
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aspects involving signs are studied by three areas of semiotics (a general theory of signs 
introduced by Charles Morris in 1938): syntactics (or syntax), semantics, and pragmatics, 

respectively. The term "semiotics" is derived from the Greek word "sema," which means sign. 
Semiotics is defined by Morris as "a general theory of signs in all their forms and manifestations, 
whether in animals or men, whether personal or social" [MOI-3]. 

2.5. The best sources of information about the recent developments and trends in 
reformulating the various areas of theoretical and applied physics (as well as some other 
disciplines of natural sciences) in terms of discrete variables and supports are two books of 
Donald Greenspan [GRl,GR5], a Special Issue of the International Journal of General Systems 

on Discrete Models (Vol. 6, No.1, 1980, pp. 1--45) and a book by Herbert S. Ingham [INl]. 

2.6. Data used in Example 2.5 (Figure 2.7) were published in a paper "The evolution of 
behaviour in gulls" by N. Tinbergen (Scientific American, Dec. 1960). Data used in Example 2.8 
(Figure 2.10) were published by Burckle, Robinson, and Cooke in Nature (September 30,1982). 

EXERCISES 

2.1. Determine the total number of methodological distinctions for source systems that contain 
(a) two variables and one support; 
(b) two variables and two supports; 
(c) five variables and three supports. 

2.2. Repeat Exercise 2.1 for data systems. 
2.3. Repeat Exercises 2.1 and 2.2 under the conditions that 

(a) only discrete variables and supports are considered; 
(b) all variables are of the same methodological type; 
(c) all supports are of the same methodological type; 
(d) all three conditions (a), (b), (c) are satisfied, but variables may be of a different 

methodological type than supports. 
2.4. Under the assumption that time is defined explicitly in Example 2.6 

(a) define a variable describing the rhythm; 
(b) determine an appropriate data matrix for the tune. 

2.5. Suggest suitable forms of representing data in terms of arrays for the following source 
systems: 
(a) a source system similar to the one defined in Example 2.8, but with three supports: time, 

latitude, and longitude; 
(b) a source system similar to the one considered in (a), but with a fuzzy observation 

channel; 
(c) the source system defined in Example 2.3; 
(d) a source system with two discrete variables based on crisp observation channels and a 

three-dimensional discrete space represented by the Cartesian coordinates. 
2.6. As in Example 2.7 (traffic lights), define an appropriate source system and data matrix for 

the following activities associated with man-made objects: 
(a) the activity of the intake valve, exhaust valve, piston, and spark plug of one cylinder in 

an internal combustion gasoline engine; 
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LOCK LOCK LOCK 
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LOCK 1 
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Figure 2.13. Illustration of Exercise 2.6b. 

(b) the activity of two locks and three lock gates of a typical canal lock ensemble with a 
constant stream of ships moving both ways (Figure 2.13); 

(c) a weekly flight schedule at a small airport (consider all features relevant to passengers, 
such as times of arrivals or departures, gates, carriers, etc., as variables or supports); 

(d) the control activity of a music box to play the melody discussed in Example 2.6 (Figure 
2.8a) and based on the assumption that each note is controlled in time by two-valued 
signals. 

2.7. Define a source system for some purpose on an object with which you interact regularly in 
your daily life and collect appropriate data for the system. The object may include you 
yourself; such a self-investigation may be motivated by some purpose related to the quality 
of your life and may include a variety of diverse kinds of variables characterizing, e.g., 
various physiological attributes, diet, sleep, working conditions, exercise, weather con
ditions, intake of drugs, etc.; they may be recorded on a daily basis or at some other, more 
appropriate time scale. The data can then be analyzed by some of the methods described in 
Chapters 3-5. 

2.S. Define an appropriate fuzzy observation channel for electric current measured in the range 
0-10 milliamperes (rnA), to an accuracy of 1 mA, and under the following assumptions: 
(i) the maximum measurement error is 0.1 mA; and (ii) the likelihood of error decreases 
linearly with the distance from each boundary between two blocks of the partition of the 
interval [0, 10] imposed by the underlying crisp observation channel (the blocks are 
appropriate intervals of 1 rnA in this case). 

2.9. Suppose that two-dimensional (or three-dimensional) space is represented by Cartesian 
coordinates. Clearly, state sets representing each coordinate are totally ordered and metric. 
(a) Show that the space can be ordered only partially if the total orders of the coordinates 

are required to be preserved. 
(b) Define the partial ordering of the space under which the coordinates remain totally 

ordered. 
(c) Define a distance for the space based on distances defined for the coordinates. 

2.10. Show for some attributes in Example 2.4 that the total ordering and distance presumed in 
the set of appearances of the attribute are preserved in the state set of the corresponding 
abstract variable. 

2.11. Define mathematically the observation and abstraction channels for variable V4 in 
Example 2.4 and supports (time, latitude) in Example 2.8 
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GENERATIVE SYSTEMS 

A basic purpose of theorizing is to organize information in a way that will develop its 
nonobvious implications. 

-DAVID R. HEISE 
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3.1. EMPIRICAL INVESTIGATION 

Science must start with facts and end with facts, no matter what theoretical 
structures it builds in between. 

-JOHN G. KEMENY 

There are three prerequisites for every meaningful empirical investigation. First, an 
object of investigation must be identified; second, a purpose of investigating the object 
must be known; third, constraints imposed upon the investigation must be assessed. 

The object of investigation is defined in Chapter 2 as a part of the world identifiable 
as a single entity for an appreciable length of time and desirable for a particular 
investigation. 

The purpose of investigation can be viewed as a set of questions regarding the object 
which the investigator (or his client) wants to answer. For example, if the object of 
investigation is New York City, the purpose of the investigation might be represented 
by questions such as "How can crime be reduced in the city?" or "How can 
transportation be improved in the city?"; if the object of investigation is a computer 
installation, the purpose of investigation might be to answer questions "What are the 
bottlenecks in the installation?", "What can be done to improve performance?", and the 
like; if a hospital is investigated, the questions might be "How can the ability to give 
immediate care to all emergency cases be increased?", "How can the average time spent 
by a patient in the hospital be reduced?", or "What can be done to reduce the cost while 
preserving the quality of services?"; if the object of interest of a musicologist is a musical 
composer, say Igor Stravinsky, his question is likely to be "What are the basic 
characteristics of Stravinsky's compositions which distinguish him from other 
composers?" 

Constraints associated with an empirical investigation consist oflimitations in the 
availability of appropriate instruments, financial and time limitations, limited man
power or computer resources, and legal, ethical, or other restrictions imposed upon the 
investigators. 

Basic stages involved in every empirical investigation are illustrated in Figure 3.1; it 
is used as a guide for further discussion in this section. 

The first stage in each particular empirical investigation is to define a source system 
on the relevant object. This is described in sufficient detail in Chapter 2 and summarized 

83 
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.Obiect of 
investigation ...... .;;..:.;.F~ 

• Conclusions 
L.....,,--,,--,r---' (final report) 

• Purpose of 
investigation 

• Constraints of 
investigation • Further data processing 

• New way of processing 
• New type of properties 
• Simplification 

• Further measurements or observation 

• Redefinition of source system 

Figure 3.1. Basic stages in empirical systems investigations. 

"'" • Further 
investigation 
(preliminary report) 

in Figure 2.3. The main issue at this stage of investigation is to select, from usually a 
large multitude of possibilities, a source system that is most appropriate for the purpose 
of investigation under the given constraints. This issue is clearly context dependent. It 
requires knowledge and experience in the specific area of inquiry as well as some 
ingenuity on the part of the investigator. He often examines some feasible hypothetical 
systems at some higher epistemological levels before choosing one particular source 
system for the empirical investigation. 

Two issues are initially involved in the process of selecting an appropriate source 
system: (i) a selection of attributes and backdrops, and (ii) a selection of observation 
channels for them. Abstraction channels become involved later, when the need arises to 
translate the system into the GSPS language. 

The selection of attributes and backdrops is perhaps the most important decision 
in the process of empirical investigation, since it affects all subsequent steps in the 
process. It is a difficult decision, which usually cannot be well characterized in terms of 
rational criteria. It is frequently based on some preconceived ideas which, when 
sufficiently crystallized in the mind of the investigator in potentially experimental 
terms, are called scientific theories. Some philosophers of science insist that any 
meaningful selection of attributes for an empirical study is always based on some 
underlying theory, be it one that is explicitly stated, one that emerges from the 
investigator's unconscious, or one that is a part of our genetically inherited innate 
knowledge. 

It is important that in the process of defining a source system the investigator be 
aware of the full range of capabilities of modern systems methodology. Otherwise, he 
may restrict his choices unnecessarily. One such restriction is well expressed by Ashby 
[AS9]: 
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The worker who has some training in mathematics can only too easily fall into the 
habit (or trap) of thinking that a "variable" must mean a numerical scale with an 
additive metric. This assumption is quite unnecessarily restrictive, sometimes fatally 
so. The meteorologist has long worked with his five "types of cloud," the 
veterinarian with the various "parasites of the pig," the hematologist with the four 
basic types of "blood-groups." Modern mathematics, using the method of set 
theory, is quite able to handle such variables, which are often unavoidable in 
behavioral sciences. 

85 

Another restriction, often encountered in empirical investigations, is to consider only 
crisp observation channels, even though their fuzzy counterparts would be far better 
for some attributes and situations. Such restriction is not necessary since methods for 
dealing with fuzzy data are nOw available. 

After attributes and backdrops are selected, the investigator must define 
observation channels for them. As discussed in Chapter 2, observation channels impose 
partitions On a given set of appearances or backdrop instances. Let each of these 
partitions be called a resolution/orm. Although resolution forms sometimes cannot be 
defined mathematically (unless we accept some metaphysical assumptions), it is 
perfectly possible to determine whether One resolution form is a refinement or 
coarsening of another form (in terms of the standard refinement ordering defined on 
partitions of a given set). Such comparison of two resolution forms is not done 
mathematically, but by comparing the corresponding measurement procedures. In each 
case, the range of possible resolution forms has an upper bound represented by the 
resolution capability of the available measuring instruments. A lower bound is any 
resolution form that contains only two blocks. Which resolution form to select within 
this range depends On the purpose of investigation. 

When the source system is defined, data gathering is then possible. This amounts 
to making observations or measurements of the chosen attributes at defined support 
instances and recording the observations in some convenient form, as discussed in 
Section 2.6. If the investigator can control some of the attributes, he may take 
advantage of this. If he does, the attributes he intends to control are viewed as input 
attributes. This results in a directed source system. The investigator then designs some 
experiments in which input attributes are manipulated, according to some experimen
tally feasible strategy related to the purpose of investigation, and output attributes are 
observed. The result is a data system. 

After the data system is finalized, the next stage in empirical investigation is data 
processing. Its aim is to determine some support-invariant properties of the variables 
involved through which the data can be represented in a parsimonious fashion and, if 
desirable, generated. This is a stage at which the GSPS can be of great help to the 
investigator. Either all data are employed for deriving the required support-invariant 
properties or only some data are processed initially while the rest is reserved for 
subsequent testing of the derived properties. 

There is a variety of support-invariant properties, but they all have a commOn 
denominator. Each of them characterizes a constraint among the variables of the source 
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system that does not change within the support set. For instance, if the support is time, 
then any time-invariant property describes a constraint among the variables that does 
not change in time. Different support-invariant properties may characterize types of 
constraints that are associated with different epistemological levels or, alternatively, 
they may differ only in the manner in which the same constraint type associated with a 
particular epistemological level is represented. The former differences are a basis for 
distinguishing epistemological types of systems; the latter represent methodological 
distinctions recognized for each particular epistemological type. 

After data have been processed in some fashion and appropriate support-invariant 
properties of the variables determined, they have to be given a proper interpretation 

with respect to the purpose of investigation. That is, their use in answering the various 
questions posed in the investigation have to be explored. If the questions can be 
answered adequately, the investigation is successfully concluded and the investigator is 
in a position to summarize his conclusions and prepare a final report. Otherwise, he 
may try to process the data again, in a different way. This may be repeated several times 
and may involve a search for the same type of support-invariant properties or a search 
for properties of different epistemological types. In the end, the investigator is provided 
with a set of generative systems or higher-level systems, each of which correctly 
represents the data from a particular point of view. Such a set of complementary 
systems, each reflecting certain aspects of the data, may frequently give the investigator 
much better insight than any of them could furnish alone. 

The system (or systems) obtained by processing the data is sometimes too complex 
to be comprehensible to the human mind and, consequently, does not help the 
investigator to develop his insight. In such cases, a reduction in complexity of the system 
is necessary or, at least, desirable. The GSPS should thus have the capability of 
simplifying systems of the various types according to simplification criteria specified by 
the user. 

After processing the data and interpreting the obtained properties, the investigator 
may also decide to gather some more data, in order to either increase his confidence in 
the derived properties or to revise them on the basis of the new data. This renewed data 
gathering changes the data system, but leaves the source system unchanged. However, 
the investigator may also decide to make a more drastic change-to redefine the source 

system. Then, of course, he has to repeat the entire process for the new source system. 
Referring to Figure 3.1 as a guide, the overall procedure of empirical systems 

investigation can be now summarized as follows: 

1. given an object, purpose, and constraints of an empirical investigation, a source 
system is defined on the object (details are shown in Figure 2.3); 

2. data are gathered for the defined source system and organized in a suitable 
form, usually a data array; 

3. the data are processed with the objective of determining some support
invariant properties representing them; 

4. the support-invariant properties obtained are interpreted with respect to the 
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purpose of the investigation, and either some final conclusions are reached or 
further investigation is initiated, beginning at stage 3, 2, or 1. 

The GSPS should be able to handle all problems associated with the data 
processing stage that is desirable to recognize. This requires that it possesses the 
capabilities of (i) deriving support-invariant properties of all desirable types from given 
data, (ii) comparing the derived properties and excluding those systems whose 
properties are inferior according to the user's criteria, and (iii) simplifying systems of 
the various types according to simplification criteria specified by the user. In this 
chapter, these three GSPS capabilities are discussed only with respect to the 
epistemological level immediately above that of data systems, referred to as level 2 
(Figure 1.3). The support-invariant properties at this level are direct characterizations 
(of various kinds) of the overall constraint associated with the variables involved. 
Systems that contain such characterizations are called generative systems. The purpose 
of this chapter is to define generative systems and illustrate some of the problem types 
in which they are involved. 

Generative systems (as well as systems of epistemologically higher types) are 
defined and discussed in this book in terms of general image systems (abstract variables 
and supports). This means that they are presented in terms of the GSPS language, i.e., 
without semantics. When an application is discussed, however, the generative system is 
supplemented with a source system, through which the relevant semantic aspects are 
introduced. The general image system, which is included in both of the systems, 
represents the interface between the GSPS language and some object-oriented 
language of a specific discipline. Consequently, it must be exactly the same in both of 
the systems. 

3.2. BEHAVIOR SYSTEMS 

Behavior system is in the eyes of the masker. 
-RICHARD KARNEY 

The term "behavior" is used in this book for a simple characterization of the overall 
support-invariant constraint among variables of a general image system and, possibly, 
some additional abstract variables. Each of the additional variables is defined in terms 
of a specific translation rule in the support set. The rule can be applied either to a variable 
in the given image system or to a hypothetical variable, introduced for various 
methodological reasons and usually referred to as an internal variable. Issues associated 
with internal variables are discussed in Section 3.10; the rest of this chapter is based on 
the assumption that no internal variables are involved. Since a description of the 
support-invariant constraint among the variables considered can be used for generating 
states of the variables within the support set, systems that contain such descriptions are 
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called generative systems. Behavior is one of the forms in which the constraint can be 
expressed. 

Given a general image system, the range of possible kinds of support-invariant 
constraints among its variables depends on the properties recognized in the support set. 
If no properties are recognized in it (as in most populations), then states of the variables 
can be constrained solely by each other. If, however, the support set is ordered, then they 
can be constrained not only by each other, but also by states in a chosen neighborhood of 
each particular support instance. Since the neighborhood is a basis in terms of which a 
support-invariant constraint is expressed, it must itself be support-invariant. 

A neighborhood in an ordered support set, which is usually referred to as a mask 

(for reasons explained later), is defined in terms of the variables involved, the support 
set, and a set of translation rules in the support set. A translation rule, say rj , is a one-to
one function 

(3.1) 

by which each element in W is assigned another (unique) element in W. For instance, 
when the support set is totally ordered (as in the case of time or one-dimensional space) 
and represented by a set of consecutive positive integers, each translation rule can be 
expressed by a simple equation 

(3.2) 

where p is an integer constant (positive, negative, or zero). When p = 0, rj is called an 
identity translation rule. 

Assume that a general image system I specified by Eq. (2.12) is given. Let V denote 
the set of variables in I and let R denote a set of translation rules that are considered for 
the variables. Then a set of variables 

referred to as sampling variables, can be introduced by the equations 

(3.3) 

for some variables Vi E V and some translation rules rj E R; sk'lll denotes the state of 
sampling variable Sk at support instance wand vi,r;('III) denotes the state of variable Vi at 
support instance riw), i.e., a support instance obtained for any given w by the 
translation rule r j • For a totally ordered support set, whose translation rules are 
expressed by (3.2), Eq. (3.3) may be written in a more specific form 

(3.4) 

Since any translation rule in R can be applied to any variable in V, the set of all possible 
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sampling variables is represented by the Cartesian product V x R. Sampling variables 
that are actually considered are characterized by the relation 

M £, VxR (3.5) 

in such a way that each pair (Vi' r)eM corresponds to one equation in (3.3). Relation M 
represents a neighborhood pattern in the support set in terms of which the sampling 
variables are defined. As mentioned previously, it is usually called a mask. Clearly, some 
one-to-one function (labeling) 

(3.6) 

must be used to introduce identifiers k of the sampling variables: (1M I denotes the 
cardinality of M). 

When sampling variable Sk is defined in terms of variable Vi and some translation 
rule, according to Eq. (3.3), then the state set of Sk is obviously the same as the state set of 
Vi' i.e., the set Vi. For notational convenience, however, let the state set of sampling 
variable Sk be denoted by Sk; the meaning of each Sk(keN IMI) in terms of one of the sets 
Vi(ieNn ) is uniquely determined by the mask. Then, the Cartesian product 

represents the set of all overall states of the sampling variables. 
Let us develop the notion of a mask and the associated behavior for image 

systems with totally ordered support sets first, and extend it to partially ordered support 
sets later. Let totally ordered support sets be denoted by Tand let t denote elements of 
T(t e T). Equation (3.4) thus becomes slightly modified: 

(3.7) 

For totally ordered support sets, a mask can be depicted as a cut in the matrix 
representing the Cartesian product V x R. This is illustrated in Figure 3.2a, where the 
rows are labeled by identifiers i of the variables in set V and columns are labeled by 
integer constants p associated with the translation rules of the form (3.2). Entries in the 
matrix are either empty or contain indentifiers k of sampling variables assigned to pairs 
(i, p) by Eqs. (3.7); the empty entries identify those elements of V x R which are not 
included in the mask. The reason for using the term "mask" becomes clear when 
considering this visual representation. 

It is often convenient to partition a mask Minto submasks Mi, each associated 
with one variable Vi of the image system. Formally, 

(3.8) 
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p= - 2 - 1 0 

i=1 
51 ,7 = V1 ,6 = 2 

k 52,7 = V1 ,7 = 0 
2 53,7 = Vl,7 = 3 

54,7 = Vl,8 = 2 5tate of d 

55,7 = v3,5 = for Mat t = 7 

4 mask M 56,7 = v3, 6 = 
57,7 = v3,7 = 0 

5 3 58,7 = V4,5 = 
59,7 = v4, 7 = 0 

510,7 = v5,7 = 2 
reference 

(a) (c) 

t= 2 3 4 5 6 8 9 

v1 0 0 2 

v2 3 2 2 
data matrix d 

v3 0 0 0 

v4 0 0 2 

Vs 2 2 2 0 

reference 

(b) 

Figure 3.2. Illustration of the concept of mask for totally ordered support sets. 

In the visual (matrix) representation of M, each of its submasks Mi is recognized as a 
row in M. 

One of the columns in each mask is associated with the identity translation rule 
(p = 0). Such a column has a special significance since the sampling variables associated 
with it are identical with the basic variables of the given image system. For each mask, let 
this column be called its reference. When a mask is placed on a data matrix so that its 
reference coincides with a particular value of t, the mask makes only a subset of the 
matrix entries transparent-those specific entries which represent the overall state of 
the sampling variables at the support instance t. In Figure 3.2b, for example, the mask 
(defined in Figure 3.2a) is located on the data matrix d at t = 7 (its reference coincides 
with t = 7). The overall state of the sampling variables for this location is specified in 
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Figure 3.2c. Observe that states of the reference sampling variables S2, S3, S7, S9, SIO are 
exactly the same (for any t) as states of the basic variables VI' V2, V3, V4 , Vs, respectively. 
The remaining sampling variables represent states of the support neighborhood of t. 
For each mask, the neighborhood pattern remains the same for any t. If t were time, then 
variable S4 would represent a future state of variable V 2 (with respect to each value of t 
that is considered), while variables Ss and S6' for example, would represent past states of 
variable V3. 

Each mask represents a specific point of view according to which the constraint 
among the basic variables is represented. The simplest way of expressing the constraint 
for a particular mask is to list all possible overall states of the associated sampling 
variables. Such a list is generally a subset of the Cartesian product C, i.e., a 
multidimensional relation defined on C. It can be defined by a function 

fB: C -+ {O, 1} (3.9) 

such thatfB(c) = 1 if state C actually occurs andfB(c) = 0 if it does not. FunctionfB is 
thus a typical selection function. It selects states that the sampling variables actually take 
on from the set of all their potential states (the Cartesian product C). Since such a 
selection provides at least some information about the behavior of the variables, 
functionfB is usually called a behavior function, which explains why the subscript B is 
used. The function defined by (3.9) is only one of several types of behavior functions, 
each of which characterizes the constraint among the variables in some particular 
fashion. Different behavior functions, which are viewed as methodological distinctions, 
are introduced in Section 3.3. In this section, the discussion is restricted to the selection 
behavior function defined by (3.9). 

Observe that the behavior function fBspecifies states of C that actually occur, but it 
does not specify at which support instances they occur. Hence, it is support-invariant. 
Observe also that the domain of fB, which is the same for all types of behavior functions, 
is defined in terms of a mask which, in turn, is defined in terms of variables and supports 
of an image system. This implies that a system, say system F B, which is supposed to 
characterize a support-invariant constraint of a set of variables in terms of a behavior 
function, is defined by the triple 

(3.10) 

where I is a general image system, M is a mask defined in terms ofl, and fBis a behavior 
function whose domain is defined by M and I. Let such a system be called a behavior 
system. 

Although each behavior system defined by Eq. (3.10) characterizes, in some 
particular support-invariant manner, the constraint among variables of an image 
system, it does not include a description of how to utilize the constraint to generate data. 
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To develop such a description, the sampling variables must be partitioned into two 
subsets: 

I. variables whose states are generated through the constraint -let them be called 
generated variables; 

ii. variables whose states are employed as conditions in the generating process
let them be called generating variables. 

~ Given a behavior system, one way in which generated and generating variables 
can be defined is to associate with them two submasks, say Mg and Mg, respectively, of 
the given mask M. Let 

where 

Mg,Mg c M, 

Mg uM g = M, 

M g nM g =0, 

(3.11) 

be called a generative mask; it is a mask M with its partition into a generated submask 
M 9 and generating submask Mg. 

In analogy with the partition of Minto Mg and M g, the set N 1M1 of identifiers k of 
the sampling variables based on M can be partitioned into two subsets, say Kg and Kg, 
which represent identifiers of the generated and generating variables, respectively. For 
notational convenience, the labeling function (3.6) may then be replaced with two 
functions 

Ag:Mg -+ Kg, 

Ag:Mg-+K g, (3.12) 

by which state sets G and G of the generated and generating variables, respectively, are 
defined by the Cartesian products 

(3.13) 

The way in which a state ofthe generated variables (say g E G) is determined on the basis 
of a state of the generating variables (say g E G) can now be expressed by a function 

feB: G x G -+ {O, 1}, (3.14) 
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where 

I" (- ) _ {I, if g can occur when g occurs, 
JGB g, g -. _ 

0, If g cannot occur when g occurs. 

Let this function be called a generative behavior function. 
When M and fB in Eq. (3.10) are replaced with M G and fGB, respectively, an 

alternative system 
(3.15) 

is obtained. Let this system be referred to as a generative behavior system. 
The use of a generative behavior function for generating data involves basically the 

following two steps: 

a. given a state g E G for some value of t E T, function fGB is used to determine state 
gEG for the same value of t; 

b. the value of t is replaced with a new value and step (a) is repeated. 

Several issues associated with this two-step generative procedure must be clarified. 
First, it is tacitly assumed in step (a) that the state g for the given value of t is known. 
When the step is used for the first time, this state is specified by user as a desirable initial 
condition. After that, however, it must be fully determined by the generating process 
itself, i.e., by states g and g associated with the previous value of t. This implies that 
values of t must be changed in step (b) according to the order of set T. Hence t can be 
changed either by replacing t with t + lor, alternatively, by replacing t with t - 1. If the 
former alternative is employed, the intial condition must be specified for the smallest 
possible value of t; for the latter alternative, it must be specified for the largest possible 
value of t. 

Second, the necessity of generating data in one of the two orders implies that there 
are only two meaningful partitions of a mask Minto M 9 and M g, each corresponding to 
one of the two generating orders. If data are generated in increasing (decreasing) order 
of t, then Mg contains exactly one element from each of the submasks M; (iENn ) 

defined by Eq. (3.8), the one with the largest (smallest) value of p; all remaining elements 
of M are included in Mg. In the visual representation, Mg is thus the set of all the right
most elements of M (the right edge of the mask) or, alternatively, the set of the left-most 
elements of M (the left edge of the mask). 

Third, for each particular state g E G, it is assumed that at least one state g EGis 
permitted by function fGB [i.e., fGB (g, g) = 1]. If only one state is permitted, the data 
generation is unique for each initial condition; such systems are called deterministic. If, 
however, more than one state is permitted, the data generation is problematic because 
the generated state is not always determined uniquely. Generative systems with this 
undesirable property are called nondeterministic systems. Selection behavior functions 
are not suitable for representing such systems. They can be more meaningfully 
characterized by behavior functions of other types, as discussed in Section 3.3. For 
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deterministic systems, form (3.14) of the generative behavior function iGB can be 
replaced with the simpler form 

(3.16) 

Example 3.1. To illustrate the generation of data by a generative behavior system 
of the type defined by Eq. (3.15), let the image system consist of the totally ordered 
support set T= N 99 and five variables VI" •. , Vs whose state sets are defined later. Let us 
use the mask defined in Figure 3.2. Data can be generated either in increasing or 
decreasing order of t. The two alternatives are illustrated in Figures 3.3 and 3.4, 
respectively. 

V5 

reference re fere nce 

t= 2 t = 2 3 

\'1 v1 

\'2 \'2 

v3 v3 5 

v4 1 v4 5 

v5 \'5 5 

reference reference 

t= 4 5 6 7 8 9 10 11 12 13 14 15 15 17 

0 0 0 0 0 0 0 0 0 0 

2 0 0 3 0 0 0 0 2 2 

2 0 4 2 5 0 5 5 6 2 5 0 3 3 

0 5 4 0 3 7 3 3 4 7 3 5 

9 4 4 9 2 7 2 2 3 6 2 4 0 0 

(e.) 
initial condit ion 

Figure 3.3. Data generated in the order of increasing values of support t (Example 3.1). 
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v4 
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Vs 
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v3 Y3 

v4 v4 

(c) 
5 Ys 9 5 Vs 

t = '" 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

0 0 0 0 0 v1 

2 3 3 0 0 0 3 2 3 

5 3 2 5 5 5 2 3 0 3 4 3 3 5 Y3 

2 6 2 8 8 5 8 0 3 6 6 0 5 v4 

9 7 0 4 9 6 6 5 8 9 4 10 4 v5 

(e) 
initial condi tion 

Figure 3.4. Data generated in the order of decreasing values of support t (Example 3.1). 

In the case of the first alternative (Figure 3.3), the generated sampling variables are 
those associated with the right edge of the mask, i.e., variables S2, S4, S7, S9' S10; the 
remaining sampling variables are generating. The generation of data proceeds from the 
left to the right in the data matrix. Let the generative behavior function iGB in the form 
(3.16) be defined by the equations 
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for k = 2,4,7,9,10. State sets of the generated variables are implied by the equations. 
State sets of the generating variables then follow from their meaning (location) in the 
mask. For instance, the state set of generated variable S4 is 0, 1, 2, 3 since the equation for 
S4 is taken modulo 4; generating variable S3 has the same state set as S4 since both of 
these variables are defined in terms of the same variable of the image system (i.e., 
S3 = S4 = V2 )· 

The first meaningful position of the mask on the data matrix (defined by the 
location of its reference) is for t = 3; the positions for t = land t = 2 are not meaningful 
since some of the sampling variables are not defined for them (t + p is not in set T). The 
initial condition consists of six entries in the data matrix: V 1.2 ,V2• 3, V3.1 , V3 . 2, V4. 1 , V4 . 2; 

as an example, we assume that all these entries are equal to 1. Five additional entries of 
the data matrix-vI, I ,V2,1, V2,2, VS,I, vS,2~annot be generated; they may be defined 
by the user, but they are not required for the data generation. The generation for 
t = 3,4, 5, 6 is illustrated in detail in Figures 3.3a, b, c, d, respectively; symbols of the 
generated states in each of the four situations are circled. Figure 3.3e shows the initial 
condition and a larger segment of the generated data matrix. 

If the data are generated in decreasing order of t (Figure 3.4), the generated 
variables are those represented by the left edge of the mask, i.e., variables SI' S3' SS, SS, 
S I o. The data are generated from the right to the left in the data matrix. Assume that fGB 
is now defined by equations 

for k = 1,3,5,8, 10. Details of the data generation for t = 98,97,96,95 are illustrated in 
Figures 3.4a, b, c, d, respectively. Figure 3.4e shows the initial condition and a larger 
segment of the generated data matrix. 

3.3. METHODOLOGICAL DISTINCTIONS 

With respect to methodology, at any rate, the pragmatists were surely right-there 

is certainly no better way of justifying a method than by establishing "it works" with 
respect to the specific tasks held in view. 

-NICHOLAS RESCHER 

The support-invariant constraint among a set of sampling variables can be 
characterized in various ways. A simple characterization, which is discussed in 
Section 3.2, can be accomplished by a selection function defined on the relevant set of 
states. Although the selection function is perhaps the most appropriate formal 
apparatus to characterize constraints of deterministic systems, whose data generation 
can conveniently be described by means offunction (3.16), it is not adequate for dealing 
with nondeterministic systems. 
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Nondeterministic systems have been traditionally handled in terms of probability 
theory. The key concept for characterizing constraints among their variables has been 
the probability measure. Athough it remains the best developed and primary 
mathematical tool for dealing with nondeterministic systems, the probability measure is 
now viewed as a special case of a more general class of measures referred to as fuzzy 
measures. 

Any measure assigns real numbers to the various subsets of a given set, by which 
degrees of some property associated with the individual subsets are characterized 
(measured). For our purpose, the set of concern is the set of all states of the sampling 
variables involved, and the property of interest is the degree oflikelihood that any of the 
states in each particular subset can occur. The degree of likelihood is usually 
characterized by a real number in the unit interval; the greater the number, the higher is 
the degree of likelihood. Each class of measures is defined in terms of some 
mathematical properties; they are operationally expressed by a set of computational 
rules, referred to as the calculus of the respective class of measures. In an attempt to 
relate the mathematical properties to commonsense notions, different classes of 
measures have been given suggestive names such as probability, possibility, plausibility, 
or credibility measures. Although such names are useful for a quick orientation, they 
must not be taken literally. Whether a measure is suitable or not for a particular 
application (and similar questions) must be decided on the basis of its mathematical 
properties and not by resorting to the common-sense meaning of the name given to it. 

~ For our purpose, measures are defined on subsets of the Cartesian product e. 
A measure is thus defined by a function 

Jl: ~ (C) -+ [0, 1], (3.17) 

where ~ (C)denotes the power set ofe. To qualify as a measure, functionJl must satisfy 
at least the following requirements of fuzzy measures: 

(Jll) Jl (0) = 0; Jl(C) = 1; 

(Jl2) if X 1 ~ X 2, then Jl(X 1) :S Jl(X 2); 

(Jl3) if X 1 ~ X 2 ~ •.• , or X 1 ;'2 X 2 ~ ••• , then lim Jl (X i) = Jl( lim Xi)' .... 

Requirement (Jll) is obvious. Requirement (Jl2), which is usually called the requirement 
of monotonicity, does not allow a subset of another subset of C to have a larger degree of 
the measured property than the latter subset has. According to requirement (Jl3), which 
is called the requirement of continuity, the limit of the degrees of the measured property 
for any infinite monotonic sequence of subsets of C must be the same as the degree 
associated with the limit of the sequence. For discrete systems, in which C is always a 
finite set, the requirement of continuity is not applicable. 

Various special classes of fuzzy measures, each with some additional properties, 
have been suggested in the literature. Names of some of these measures, together with a 
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FUZZY 

MEASURES 

POSSIBILITY CRISP 

MEASURES POSSIBILITY 

CREDI BI LlTY PROBABI LlTY PLAUSI BI LlTY 

(Belief) MEASURES MEASURES 

MEASURES 

CRISP NECESSITY 
NECESSITY 

MEASURES 
(Certainty) 

Figure 3.5. A summary of some classes of fuzzy measures. 

diagram of the inclusion relationships among them, are given in Figure 3.5. For 
example, the class of probability measures is included in the class of plausibility 
measures as well as credibility measures, but it does not overlap with the class of 
possibility measures or necessity measures. 

The individual classes offuzzy measures are viewed as methodological distinctions. 
They are applicable to generative systems and all epistemologically higher types of 
systems. To see how the various systems problems are affected by the choice of a 
particular class of measure, two classes of fuzzy measures are used in this book in the 
context of the various systems problems. One is the classical and well-developed class of 
probability measures; the other is the class of possibility measures. It should be 
mentioned that the possibility measures are applicable only to finite sets and to some 
special cases of infinite sets; in general, they do not satisfy the continuity requirement. 
Hence, their applicability is guaranteed for discrete systems, but not for continuous 
systems .• 

It is assumed in this book that the reader is familiar with the fundamentals of 
probability theory, to which the notion of the probability measure is central. It is well 
known in probability theory that any probability measure, say measure p, can be 
uniquely determined by a probability distribution function: 

iB:C -+ [0, 1], (3.18) 
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which must satisfy the appropriate requirements, via the formula 

p(X) = L fB(e), (3.19) 
ceX 

where X E fJI(C). The subscript B is used to indicate that the probability distribution 
function is employed as a behavior function in the same sense as the function defined by 
(3.9). Functions (3.9) and (3.18) play essentially the same role in defining a behavior 
system (3.10), even though they are methodologically distinct and neither is a special 
case of the other. Hence, the same symbol is used for both of them. Which of the 
two functions is actually used in each particular case must follow from the definition 
of the overall methodological distinction, which is necessary for each problem 
. statement. 

~ A possibility measure is a function 

1t: fJI(C) -+ [0, IJ 

that satisfies the following requirements: 

(1tl) 1t(0) = 0; 1t(C) = 1; 

(1t2) 1t (U Xi) = max 1t (X;). 
i i 

(3.20) 

It is obvious that (n2) implies the monotonicity requirement of fuzzy measures. As 
mentioned previously, the continuity requirement is not always satisfied by 1t and, 
consequently, the possibility measure is not useful for systems with continuous 
variables. ~ 

It is well known that any possibility measure 1t can be uniquely determined by a 
possibility distribution functionfB of the form (3.18) via the formula 

1t(X) = maxfB(e). (3.21) 
ceX 

The same symbolfBis used again for the reasons mentioned in the context ofprobability 
distribution functions. 

Observe that the selection function (3.9) is a special case of the possibility 
distribution function, but it is not a special case of the probability distribution function. 
It is a possibility distribution function in which the degrees of possibility fB(e) are either 
o or 1 for each e E C. This special case is usually called a crisp possibility distribution 
function (Figure 3.5). 

The generative behavior function foB for the probabilistic or possibilistic meth
odological distinctions has the form 

fGB:G x G -+ [0, IJ, (3.22) 
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where fGB (g,g) is a conditional probability or possibility, respectively, based on 
condition g. To emphasize thatfGB represents conditional probabilities or possibilities, 
the standard notation fGB(glg) is used instead of fGB(g,g) for the probability (or 
possibility) of g given g. 

Selection function (3.14) may be viewed as a special (crisp) case of the possibilistic 
interpretation offunction (3.22), but not a special case of its probabilistic interpretation. 
For deterministic systems, however, form (3.16) of the generative behavior function is 
methodologically appealing and, consequently, it seems useful to view it as meth
odologically distinct from the possibilistic alternative. Whether function (3.16) is 
actually utilized or not is an issue associated with the GSPS implementation and not its 
architecture. From the standpoint of the GSPS user, it is sufficient to distinguish only 
the probabilistic and possibilistic alternatives and, perhaps, some other useful classes of 
fuzzy measures. 

Thus far, only neutral behavior systems (basic and generative) have been 
considered. To describe their directed counterparts, the relevant set of sampling 
variables must be partitioned into two subsets: 

i. sampling variables that are determined by the environment, i.e., those defined 
as input variables [variables Vi for which u(i) = 0]; 

ii. all remaining sampling variables associated with a mask under consideration. 

These two subsets of sampling variables can be defined by partitioning the given mask, 
say M, into two submasks. Let submask Me define the sampling variables determined by 
the environment and let Me define the remaining ones. Then, the triple 

(3.23) 

where 

characterizes a mask of a directed behavior system . 
• According to the partition of Minto Me and Me' the set N IMI of identifiers of 

the sampling variables defined by M is now partitioned into two subsets, Ke and Ke' 
The labeling function (3.6) is replaced by two functions, 

A.e:Me -+ Ke, 

A.e:Me-+ Ke, 
(3.24) 
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and the following two sets of states, which are needed for directed systems, are defined: 

E=XSk, 
keK. (3.25) 

The behavior function of directed systems has the form 

JB:E x E -+ [0, 1], (3.26) 

whereJB(e,e) has the meaning of a conditional probability or possibility (or some other 
measure) and, hence, the standard symboIJB(ele) is used instead ofJB(e,e). The directed 
behavior system can now be defined as the triple 

(3.27) 

A generative behavior function for directed systems can be introduced by 
partitioning M ,into two subsets, M g and M Ii' associated with generated and generating 
variables, respectively. This is done in exactly the same way as previously described for 
M. The generative mask for directed systems is then defined by the quadruple 

where { Me' M g' M Ii} is a partition of M. Labeling functions (3.12) are again defined, 
where {M g' M Ii} is now viewed as a partition of M i' and two sets of states, G and G, are 
introduced by (3.13). Then, 

JGB:E x G x G -+ [0,1], (3.28) 

whereJGB (e, g, g) is a conditional probability or possibility (or another measure) and, 
hence, the symbollGB(gle, g) is used to conform to the literature. For deterministic 
systems,/GB can also be expressed in a more convenient form 

(3.29) 

which is a directed counterpart of the generative behavior function defined by (3.16). 
Assuming that the meaning (methodological distinction) ofJGBis specified, the directed 
generative behavior system is defined by the triple 

(3.30) 

The partition of a mask into the three submasks Me' Mg , M Ii (and the 
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p= -2 -1 0 

v1 Me { Ke ={ 1,2,3, 4} 

N10-' { 
v2 Ke= 5,6, ... ,10} 

L { Kg: { 7, 9, 10} 

v4 Mg Kg - { 5,6,8 } 

v5 

Mg 
(a) 

p= -2 -1 0 

v1 { Ke = { 1, 2, 3,4, } 
e 

N10 -. } 
v2 Ke={5,6, ... ,10 

v3 L{ Kg: {5,8,1O} 

v4 g Kg- {6, 7,9 } 

v5 

(b) 

Figure 3.6. Partitions of a mask based on a directed image system with totally ordered support 
set and u = (0,0,1,1,1) for the two possible orders of generating data. 

corresponding partition of the identifiers of sampling variables) is illustrated in Figure 
3.6 under the assumption that VI and V2 are input varIables. The two alternatives shown 
in Figure 3.6a and 3.6b correspond to the generation of data in increasing and 
decreasing order of the support values, respectively. 

3.4. FROM DATA SYSTEMS TO BEHAVIOR SYSTEMS 

Histories of science writ/en in terms of processes that discover pat/erns in nature 
would seem closer to the mark than histories that emphasize the search for data to 

test hypotheses created out of whole cloth. 
- HERBERT A. SIMON 

One important class of systems problems, often referred to as inductive systems 
modeling, can be described loosely (in the context of the GSPS) as the set of problems 
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associated with the process of climbing up the epistemological hierarchy of systems. All 
problems in this class are characterized by the following common description: given 

• a particular system, say system x, of some epistemological type; 
• the set of all particular systems of some higher epistemological type that are 

compatible with system x (i.e., are based on the same image system and 
methodological distinctions), say set ~ and 

• a set of relevant requirements Q regarding some properties of systems in set Y, 
one of which is the requirement that the given system x be approximated by the 
higher-level system as closely as possible, 

determine a subset YQ of Y such that each system in YQ satisfies all the requirements 
specified in Q. 

To illustrate in this section the problem type of determining behavior systems that 
represent a given data system and has some additional desirable properties, let x be a 
data system with nominal variables, let Ybe the set of all behavior systems with either 
probability or possibility behavior functions that are compatible with x, and let Q 
consist of 

i. a restriction of the set Y to a subset Y,. defined either by the user or by the GSPS 
(as a default option); 

ii. a requirement that the misfit (disagreement) between the constraint among 
relevant variables of the given data system and a behavior system in YQ be as 
small as possible; 

iii. a requirement that the degree of nondeterminism in generating data by a 
behavior system in YQ be as small as possible; 

iv. a requirement that the system in YQ be as simple as possible; 
v. the precedence of requirement (ii) over requirements (iii) and iv. 

In this general formulation, requirement (i) amounts to a specification of a set of 
acceptable masks. If the support set is not ordered, then the notion of support 
neighborhood is vacuous and, consequently, only one mask is meaningful. It is the mask 
based only on the identity translation rule, which is usualIy called a memoryless mask. 
Since there is only one acceptable mask in this case, the problem is rather trivial 
[requirements (iii), (iv) and (v) are not applicable]. It amounts to deriving either the 
probability or possibility distribution function from the given data to satisfy 
requirement (ii). This is done by an exhaustive sampling of the data in terms of the 
memory less mask (order of sampling is irrelevant in this case) and determining for each 
state C of the sampling variables (which are in this case identical with the basic variables) 
the number of its occurrences in the data, say N(c). Numbers N(c) for all c E C, often 
called frequencies of the individual states c, are then employed for calculating the 
corresponding probabilities or possibilitiesfB(c) according to some rules. 

The rules for calculating probabilities or possibilities from the frequencies are not 
unique. They depend on the meaning given to the probabilities or possibilities by the 
user. For example, if probabilities are viewed purely as means of characterizing the given 
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data, they are normally calculated as relative frequencies, i.e., ratios of the individual 
frequencies N(c) to the total number of available samples in the data for the mask used. 
Hence, 

.r. (c) = N(c) . 
B L N(rx) 

(3.31 ) 

mEe 

If, however, probabilities are viewed as estimators offrequencies of yet-to-be-observed 
outcomes, they are calculated by the formula 

N(c) + 1 
fB(C) = I:mEe N (rx) + ICI (3.32) 

Since possibility distributions are less restrictive than their probabilistic counter
parts (e.g., they are not required to add to 1), there is an even greater variety of rules for 
calculating them from the frequencies N (c). A natural way of calculating possibilities, 
which may be viewed as a possibilistic analog offormula (3.31), is to consider them as 
ratios of the individual frequencies N(c) to the maximum frequency observed in the 
data, i.e., 

fB(C) = _N_(c_) _ (3.33) 
max N(rx) 

mEe 

Another formula is based on calculating possibilities from the corresponding 
probabilities. LetfB(c) andf'B(c) denote the possibility and probability of state c (c E C), 
respectively. Then, 

fB(C) = L min [f~ (c),f' B(OC)]. (3.34) 
«Ee 

According to this formula, possibilities are expressed in terms of upper bounds of the 
probability values (Note 3.3). 

As an example of the use of formulas (3.31}-(3.34), probability and possibility 
distributions calculated by these formulas for a specific frequency distribution are given 
in Table 3.1. 

• For fuzzy data, N (c) cannot be obtained by counting since each overall state c 
occurs at each particular support instance w with some degree of certainty, say dc•w . This 
degree, which for crisp data is either 0 or 1, is determined by some function 

a: [0, IJ2 -+ [0, IJ, 

through which the individual degrees di,j"w associated with the components of care 
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TABLE 3.1 
A Comparison of Different Probability and Possibility Distributions for the Same 

Frequencies N(c) 

fB (c) calculated by formula 
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(3.34) and (3.34) and 
V2 V3 N(c) (3.31) (3.32) (3.33) (3.31 ) (3.32) 

0 0 20 0.20 0.194 0.4 0.7 0.722 
0 0 0.00 0.009 0.0 0.0 0.072 
I 0 10 0.10 0.102 0.2 0.5 0.538 
I I 5 0.05 0.056 0.1 0.3 0.354 
0 0 0 0.00 0.009 0.0 0.0 0.072 
0 I 50 0.50 0.472 1.0 1.0 1.000 

0 10 0.10 0.102 0.2 0.5 0.538 
5 0.05 0.056 0.1 0.3 0.354 

aggregated. Function a, which is called an aggregationjuntion, must satisfy at least the 
following requirements: 

(al) a is a continuous function; 
(a2) a is symmetric, i.e., a(x, y) = a(y, x); 

(a3) a is associative with respect to composition, i.e., a(x, a(y, z» = a(a(x, y),z); 

(a4) a is monotonic nondecreasing, i.e., if y > z, then a(x, y) ~ a(x, z). 

It is clear that the class of functions that satisfy these requirements is infinite, but it is 
outside the scope of this book to study this class. Obvious examples of the aggregation 
function are functions 

a(x, y) = xy and a(x, y) = min (x, y). 

After the aggregate degrees of certainty dc•w are determined for all samples in the 
given data, each identified by a particular support instance w, and all overall states c E C, 
their values for each particular c can be added. This results in numbers that are 
analogous with the frequencies N (c). It is reasonable to call them pseudojrequencies (as 
they are not necessarily integers) and use for them the same symbol N(c) that is used for 
frequencies. Then, N(c) are defined for fuzzy data by the formula 

N(c) = I de."" .. 
where the summation is taken over all meaningful samples in the data, each associated 
with a particular support value w that uniquely defines the location of the reference in 
the support set of the used mask. Once the pseudo frequencies N (c) are determined, they 
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can be employed for calculating the probabilities or possibilities in exactly the same way 
as frequencies, e.g., by using formulas (3.31) or (3.33), respectively, or by any other 
acceptable and desirable rules. ... 

It is obvious from this brief exposure that the variety of ways in which probabilities 
or possibilities of overall states (c E C) may be determined from the frequencies or 
pseudofrequencies N(c) is infinite, even though the values N(c) are unique for any 
specific data and a particular mask. It is therefore important that the GSPS allow the 
user to specify his own choice of how to employ the frequencies or pseudofrequencies. If 
no choice is specified the GSPS should offer a "menu" of options, preferably those 
which have been frequently used. If he indicates no preference, then the GSPS should 
use a standard default option, say the one expressed by Eqs. (3.31) or (3.33) for 
probabilities or possibilities, respectively, and some standard aggregation operation for 
fuzzy data (e.g., min or product operations). Some typical options are illustrated in this 
book by various examples. 

In addition to providing options for calculating probabilities or possibilities, it is 
also important to allow the user to incorporate in the calculation any additional 
information regarding the constraint among the variables. Let such additional 
information, which is not included in the data, be called background itiformation. It can 
take many different forms, some of which are illustrated by examples. 

Example 3.2. Data regarding 12 variables were collected in 1976 for a population 
of 200 government employees within a particular organizational unit. These data were 
used in a study whose purpose was to discover possible inequities. For this example, 
only five of the 12 variables are considered; they are defined in Table 3.2. The support set 
(the population of 200 employees) is not ordered and, hence, only the memoryless mask 
is applicable. 

The user decided to characterize the constraint among the variables by a possibility 
distribution function and selected formula (3.33) for calculating degrees of possibilities 
from observed frequencies of the individual states. In addition, however, he wanted to 
utilize available background information regarding constraint among the variables due 
to law and other regulations. This was done by distinguishing three kinds of states: 

a. states that occur in the data-their degrees of possibilitY!B(c) are calculated by 
formula (3.33); 

b. states that are not possible according to the background information (are 
prohibited by law or other regulations)-dearly,fB(c) = 0 for these states; 

c. states that are in principle possible even though they do not occur in the data- it 
is reasonable to define for these states a nonzero degree of possibility that is 
smaller than the minimal degree calculated for the observed states, i.e., to use 
some value in the interval 

o <!B(C) < min/s(cx), 
(I 
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TABLE 3.2 
Definitions of Variables in Example 3.2 

Attribute 

Date of birth 

Sex 

Date of hiring 

Total performance 
score 

Average hourly 
earning 

Variable 

VI 

Vl 

V3 

V4 

V, 

States of the variable 

1: 1930 or earlier 
2: 1931-1945 
3: 1946 or later 
1: male 
2: female 
1: 1960 or earlier 
2: 1961-1970 
3: 1971 or later 
1: 20% or less 
2: 21 %-40% 
3: 41 %-60% 
4: 61 %-80% 
5: 81 % or more 
1: $4.99 or less 
2: $5.00-$9.99 
3: $10.00-$14.99 
4: $15.00 or more 

where IX indexes the observed states; in this study it was decided to use the value 

fB(C) = ! minfB(IX). 
(I 
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All states C that are possible according to the background information are listed in Table 
3.3, together with their frequencies N(c) and degrees of possibility fB(C), Clearly, only 
those states for which N(c) =1= 0 occur in the data. 

Suppose now that the support set is totally ordered. In that case, many different 
behavior systems can be obtained for the same data system, each one based on a 
particular mask. If properly derived from the given data, they all satisfy the misfit 
requirement equally well. More specifically, the term "properly derived" means that the 
behavior function is in perfect agreement with the data (and, possibly, some 
background information) in terms of the mask and the type of constraint characteriz
ation chosen. 

As explained previously for memory less masks, a behavior function that agrees 
perfectly with the given data and background information can be obtained from state 
frequencies (of the respective sampling variables) determined by an exhaustive sampling 
of the data in terms of the mask considered. Each mask can be viewed as a window 
through which a sample is seen in a data matrix (or a higher-order array). When this 
window is moved across the entire data matrix, state frequencies of the respective 
sampling variables are determined by observing the samples and counting how many 
times each state occurs. The order of moving the mask on the data matrix does not 
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TABLE 3.3 
Possibility Behavior Function in Example 3.2 

C VI Vz V3 V4 V, fB(c) N(c) c VI Vz V3 V4 Vs fB(c) N(c) 

I 2 0.111 2 40 2 2 2 4 4 0.111 2 
2 I 3 4 0.056 0 41 2 2 2 5 4 0.056 0 
3 2 2 0.111 2 42 2 2 3 2 2 0.056 0 
4 2 4 0.111 2 43 2 2 3 2 3 0.056 0 
5 3 3 0.056 0 44 2 2 3 2 4 0.111 2 
6 I 3 4 I 0.111 2 45 2 2 3 4 I 0.056 0 
7 2 2 0.056 0 46 2 2 3 4 3 0.OS6 0 
8 2 I 4 0.111 2 47 2 2 3 4 4 0.333 6 
9 2 2 2 0.167 3 48 2 2 3 5 4 0.222 4 

10 2 2 4 0.889 16 49 3 3 4 I 0.056 0 
II 2 3 2 0.056 0 50 3 2 I 4 0.056 0 
12 2 3 4 0.222 4 51 3 2 2 2 0.056 0 
13 2 4 I 0.056 0 52 3 2 2 4 0.167 3 
14 2 4 4 0.778 14 53 3 2 3 4 0.167 3 
15 2 I 5 4 0.222 4 54 3 2 4 2 0.056 0 
16 2 2 3 4 0.056 0 55 3 2 4 4 0.333 6 
17 2 2 4 4 0.167 3 56 3 2 I 5 4 0.056 0 
18 2 2 5 4 0.056 0 57 3 2 2 I 4 0.111 2 
19 2 3 2 4 0.056 0 58 3 2 2 2 2 0.222 4 
20 2 3 3 I 0.056 0 59 3 2 2 2 4 0.667 12 
21 2 3 3 4 0.056 0 60 3 2 2 3 2 0.056 0 
22 2 3 4 4 0.056 0 61 3 2 2 3 4 0.333 6 
23 I 2 3 5 4 0.056 0 62 3 2 2 4 2 0.222 4 
24 2 3 2 0.056 0 63 3 2 2 4 3 0.056 0 
25 2 I 3 4 I 0.056 0 64 3 2 2 4 4 0.167 3 
26 2 I 3 4 2 0.111 2 65 3 2 2 5 4 0.111 2 
27 2 2 I 2 0.056 0 66 3 2 3 I 0.056 0 
28 2 2 I 4 0.222 4 67 3 2 3 2 0.111 2 
29 2 2 2 I 0.111 2 68 3 2 3 I 4 0.111 2 
30 2 2 2 4 1.000 18 69 3 2 3 2 I 0.167 3 
31 2 2 3 4 0.167 3 70 3 2 3 2 2 0.167 3 
32 2 2 4 2 0.056 0 71 3 2 3 2 4 0.556 10 
33 2 2 I 4 4 0.667 12 72 3 2 3 3 2 0.222 4 
34 2 2 I 5 4 0.167 3 73 3 2 3 3 4 0.167 3 
35 2 2 2 I 2 0.056 0 74 3 2 3 4 2 0.056 0 
36 2 2 2 2 2 0.056 0 75 3 2 3 4 4 0.500 9 
37 2 2 2 2 4 0.222 4 76 3 2 3 5 I 0.056 0 
38 2 2 2 3 2 0.056 0 77 3 2 3 5 4 0.167 3 
39 2 2 2 3 4 0.056 0 

matter, provided that all possible sampling positions are covered, but it is convenient to 
proceed according to the order of the support set (from left to right or vice versa). 

Some masks may be better than others for each specific purpose, but none of them 
is either right or wrong. This important point is well expressed by James Keys*: 

• Only Two Can Play This Game, Bantam Books, New York, 1974, p. 99 (original edition published by Julian 
Press, New York, 1972). James Keys is a pseudonym of G. Spencer Brown. 



www.manaraa.com

SEC. 3.4: FROM DATA SYSTEMS TO BEHAVIOR SYSTEMS 

You may look at the world any way you please, through any window you choose. 
Nor does it always have to be the same window. Naturally how the world appears, 
what you see and what you miss, and the angle on what you see, depends on which 
window you are using, but can a window be right or wrong? A window is a 
window .... it is perfectly OK to try another window if what you see through yours 
seems meaningless and inadequate. Naturally if you enjoy the view, there is no need 
to change it. Alternatively, if you come to another window, it may take time to adjust 
to what you see. 
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If the mask considered consists of a single column (a memory less mask), samples 
for all support values are complete. However, if it consists of more than one column, 
then some samples at the beginning and end of the support set (the left and right end of 
the data matrix) are not complete (see Figures 3.3 and 3.4). More specifically, the 
number of incomplete samples at each end of the data matrix is equal to the number of 
columns in the mask minus one. Let the number of columns in the mask be called the 
depth of a mask and let it be denoted by ~M for mask M. Then, 

~M = 1 +maxp-minp, (3.35) 

where the max and min operators are applied over all integers such that (Vi' t + p) E M. 
For instance, ~M = 4 for the mask defined in Figure 3.2; ~M = 1 for any memory less 
mask. 

There are at least two reasons why masks with large depths are generally 
undesirable. First, if a mask is employed for generating data, as discussed in Section 3.2, 
then the larger its depth the larger is the required initial condition. This, generally, is not 
desirable. Second, if the mask is used for sampling data, the number of incomplete 
samples is equal to 2(~M - 1). This means that as the depth of the mask increases, fewer 
of the available data are utilized for deriving a behavior function. Consequently, the 
empirical support of the derived behavior function weakens with increasing depth of the 
mask used. This, again, is clearly undesirable. For both of these reasons, as well as for 
practical reasons related to computational complexity, mask depths are usually 
restricted. This provides a rationale for requirement (i) in the problem type under 
discussion. 

Given a data system, background information (if available), a mask, and a 
characterization of the constraint among sampling variables, the behavior function is 
uniquely determined by the sampling procedure explained previously. This uniqueness 
is a direct consequence of the misfit requirement. The data system and background 
information are fixed in each particular problem. Assume that the type of constraint, as 
a methodological distinction, is also fixed. Then, behavior systems that satisfy the misfit 
requirement (i.e., candidates for the solution set YQ ) are uniquely identified (and 
distinguished from each other) by their masks. The restriction of the set Yto a subset Y,., 
as required by (i), can thus be expressed as a restriction on the set of possible masks. 
According to our previous discussion, it is desirable to restrict the depth of the mask. 
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This can be accomplished by defining a largest acceptable mask, say mask M, by the 

Cartesian product 

M = VxR, 

where 

R = {(t+p)lpI ~ P ~Pz}' 

Such a mask may be represented as a full matrix with n rows and I + pz - PI (= AM) 
columns; let this matrix be referred to as an M-matrix. If the user specifies only AM, 

but not the actual values of P I and Pz, then some standard values are chosen by the 

GSPS, say pz = 0 and PI = I-AM. 

Given a largest acceptable mask M, all of its meaningful submasks represent the 

restricted set Y, of behavior systems. The term "meaningful submask" is used here to 

characterize submasks of M that satisfy the following requirements: 

(ml) at least one element in each submask Mi , as defined by Eq. (3.8), is included 

(one element in each row of the M-matrix); 

(m2) at least one element with the translation rule t + pz must be included (a right

most element in the M-mask). 

Requirement (ml) is necessary for the sake of covering the given data system, i.e., to 

guarantee that each basic variable of the given data system is included in each of the 

behavior systems in the restricted set Y,. Requirement (m2) is included to prevent 

duplicates of equivalent submasks, i.e., submasks that can be converted to each other 

solely by adding a constant to the translation rules t + P (a column shift in the M-mask). 

It is easy to derive the following formula for the number N (n, AM) of meaningful 

submasks of a largest acceptable mask M defined for n basic variables and with a depth 

of AM: 

N(n, AM) = (2~M - 1)" - (2~M-l - 1)". (3.36) 

The first term in (3.36) expresses the number of submasks of M that satisfy requirement 
(ml); the second term gives the number of masks that violate requirement (m2). 

Numbers of N (n, AM) for n, AM ::; 10are shown in Table 3.4. The three areas indicated 

in the table identify such ranges of the largest acceptable mask that are (a) 

computationally tractable (the left top area), (b) potentially tractable, but would require 

heavy use of a very powerful computer (the middle area), and (c) considered as 

intractable (the right bottom area). These areas indicate, of course, only a typical 

situation. They depend, at least to some extent, on the available computing facilities. For 

instance, if specialized computer hardware with extensive parallel processing were 

available, it is likely that the range of tractable cases would be almost doubled. 

If the number of meaningful masks is too large to be computationally tractable, the 
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GSPS should offer the user a "menu" of available additional restrictions within the 
largest acceptable mask. Such restrictions may include, for example, 

• a fixed set of generated sampling variables; 
• a fixed number of sampling variables; 
• a fixed upper bound of the number of sampling variables; 
• a restriction to masks without gaps (such as the element identified by i = 4, 

p = - 1 of the mask defined in Figure 3.2a). 

Restrictions such as these, some of which can be combined, reduce the set Y,. 
considerably and thus extend the size of computationally tractable largest acceptable 
masks. 

Although these restrictions are important for reducing computational complexity, 
especially when the largest acceptable mask desired is intractable, each of them distorts 
the original problem. Unless justified by some context-dependent reasons, they should 
be used only as a last resort in dealing with computational complexity. 

In the rest of this chapter, the focus is on the general problem type in which the 
restricted set Y,. consists of one behavior system for each meaningful submask of the 
chosen largest acceptable mask (assumed to be within the computationally tractable 
range). As explained previously, each of these systems is determined in such a manner 
that it is in perfect agreement with the given data system and background information 
with respect to its mask and the accepted type of constraint characterization. The misfit 
requirement was thus given a precedence over the other requirements, as demanded by 
(iv) in the problem statement. It now remains to employ requirements (iii) and (iv), which 
are usually called the requirements of determinism and complexity, respectively, for 
deriving the solution subset YQ of the restricted set Y,.. 

Although various special requirements are sometimes added to the statement of 
any particular problem type, the requirements of determinism and complexity are of 
general significance. As such, neither of them is usually omitted. The solution set based 
on these two requirements (and, of course, the misfit requirement) is often determined 
first. Behavior systems included in it are then examined by the investigator. He may use 
all of them as complementary representations of the basic variables. If, however, further 
reduction is desirable, they are evaluated and compared by additional criteria, some of 
which may be context dependent or may express the investigator's preferences. 

3.5. MEASURES OF UNCERTAINTY 

Asfar as the laws of mathematics refer to reality, they are not certain; and asfar as 
they are certain, they do not refer to reality. 

-ALBERT EINSTEIN 

Intuitively, the degree of nondeterminism should measure the average uncertainty 
associated with the generation of data. As such, it must be defined in terms of generative 
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behavior functions fOB, fOB, given by (3.22) and (3.28) for neutral and directed behavior 
systems, respectively. When these functions are probability distribution functions, a 
measure of average uncertainty is well established-it is the Shannon entropy, 
introduced by Claude Shannon in 1948 [SH3]. 

Let P denote the set of all probability distributions that can be defined on finite sets 
of alternative (mutually exclusive) outcomes. Then, a probabilistic measure of un
certainty is a function 

H:P -+ [0,00) 

that possesses some properties considered desirable for such a measure. The following 
properties, have been generally accepted as necessary properties of any meaningful 
measure of uncertainty (Note 3.6): 

(HI) symmetry-uncertainty is invariant with respect to permutations of 
probabilities; 

(H2) expansibility-uncertainty does not change when outcomes with zero 
probabilities are added to the set of outcomes considered; 

(H3) subadditivity-the uncertainty of a joint probability distribution is not 
greater than the sum of the uncertainties of the corresponding marginal 
probability distributions; 

(H4) additivity-for probability distributions of any two independent sets of 
outcomes, the uncertainty of the joint probability distribution is equal to the 
sum of the uncertainties of the individual probability distributions; 

(H5) continuity-uncertainty is a continuous function in all its arguments. 

It is well known that functions of the form 

H(j(x)lxEX) = -a I f(x)logbj(x) 
XEX 

are the only functions that possess properties (Hl)-(H5); 

(f(X)IXEX)EP 

denotes the probability distribution associated with a particular finite set X of 
alternative outcomes x, a is an arbitrary positive constant, and b is an arbitrary base 
of logarithms. When a reasonable normalization property 

H(0.5, 0.5) = 1 

is added to the properties (the uncertainty of two equally probable outcomes is equal to 
1), the measure of uncertainty becomes unique: 

H(f(x)lxEX) = - I j(x)log2j(x) (3.37) 
XEX 
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Function (3.37) is usually referred to as the Shannon entropy. It measures uncertainty in 
units that are called bits (an abbreviation for binary digits). Such units are intuitively 
appealing since any integer value of uncertainity measured in them, say value u, is 
equivalent to the uncertainty in predicting the truth values of u propositions or values 

of u binary digits, under the assumption they are equally probable. 
Assuming that each finite set X of alternative outcomes under consideration is 

characterized by a particular probability distribution, it is convenient to simplify the 
notation by using H(X) instead of H(f(x)lxEX). 

It is easy to show that 

O:S; H(X) :s; log2 1X I. (3.38) 

The lower bound, H (X) = 0, is obtained when probabilities of all outcomes except one 
are equal to 0; the upper bound is reached when probabilities of all events are the same, 
i.e., equal to l/IXI. The ratio 

H(X) = H(X)/log2 IXI (3.39) 

of the actual entropy to its upper bound is called a normalized entropy; clearly 

O:S; H(X) :s; 1. (3.40) 

For our purpose, sets of outcomes are state sets C, G, G, E, and probability 
distributions are based on behavior functions fB' fGB, lB' 1GB, defined by (3.18), 
(3.22), (3.26), (3.28), respectively. For the sake of notational simplicity, subscripts Band 
GB, as well as the caret, are omitted. Symbols 

f(c). f(glg), f(gle, g) 

thus denote probabilities defined by (3.18), (3.22), (3.26), (3.28), respectively; the meaning 
of each symbol is uniquely determined by the argument shown in the parentheses. In 
addition, we define the marginal probabilities 

fig) = I f(c), (3.41) 
c>i 

where c > g designates g as a substate of c; formally, if 

and 

then g -< c(gisa substate of c) if and only if gj = Cj for allj E Z. For directed systems, the 
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marginal probabilities ar calculated by a slightly modified formula 

fOtle) = I f(e I e). (3.42) 
'>1 

The conditional probabilities, which characterize the process of generating data, 
are related to the basic (joint) and marginal probabilities by the formulas 

_ f(c) 
f(glg) = /(iO' (3.43) 

_ f(ele) 
f(gle,g) = f(gle) (3.44) 

for neutral and directed systems, respectively. 
Given a generative mask for a neutral system through which state sets G, G of some 

generated and generating sampling variables are defined, the generative uncertainty 
H (G I G ) is defined as the average uncertainty based on probabilitiesf(g I g), weighted by 
the probabilitiesf(g) of the generating conditions: 

H(GIG)= - I f(g) I f(glg)log2f(glg). (3.45) 
leG leG 

This value is taken as the degree of nondeterminism of the given neutral generative 
behavior system. 

For directed systems, the generative uncertainty H(G I E x G) is calculated by the 
formula 

H(GIE x G) = - I I fie, g) I f(gle, g)log2f(gle, g), (3.46) 
eeE leG leG 

which is directly applicable only under the assumption that it is possible and meaningful 
to determine probabilities fie, g), e.g., when the directed system is derived from a 
neutral system. If probabilities of states in set E are not available or are viewed as 
irrelevant, thenf(ele) are the basic probabilities [counterparts of probabilities f(c) for 
neutral systems] from which other desirable probabilities are calculated. The un
certainty H(GIE x G) is then expressed by the formula 

- 1 
H(GIE x G)= -lEi I L_figl e) I f(gle, g)logz/(gle,g), (3.47) 

eeE leG leG 

where probabilities f(gle) and f(gle, g) are determined from the given probabilities 
f(ele) by Eqs. (3.42) and (3.44), respectively . 

• Formulas (3.45), (3.46), (3.47) can be replaced by alternative formulas that are 
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computationally more convenient. Equation (3.45), for instance, can be modified as 
follows: 

H(GIG) = - IfODIf(glg)logli'(glg) 
g K 

= -I IfODf(glg) log2f(glg) 
g K 

= -I If(c)[lOg2f(c)lf(g)] 
g K 

= H(C) + I If(c) log2f(g) 
g K 

= H(C)+ If(g)log2f(g) 
g 

= H(C)-H(G) . .... 

Hence, H (G I G) can be calculated without the use of conditional probabilities by the 
formula 

H(GIG) = H(C)-H(G). 

By the same reasoning, Eqs, (3.46), (3.47) can be replaced by 

respectively. 

H(GIE x G) = H(C) -H(E x G), 

H(GIE x G) = I~I [I H(Ele)- I H(Gle)]. 
eEE eEE 

(3.48) 

(3.49) 

(3.50) 

The maximum value of generative uncertainty of any kind is log2lGI; hence, the 
normalized generative uncertainty is obtained from the given uncertainty by dividing it 
by this maximum value. For instance, 

H(GIG) = H(GIG)/log2IGI. 

Example 3.3. A probability behavior functionf(c) for four sampling variables Sl' 

S2' S3' S4' each with two states 0, 1, is specified in Figure 3.7a; states with zero 
probabilities are not listed in the table. The sampling variables are defined in terms of 
two basic variables v1, V2 by the mask in Figure 3.7b. Since sampling variables S2' S3 are 
translations of the same basic variable v1, probability distributions for their states must 
be equal; they, indeed, are equal: both have probabilities 0.7 and 0.3 for states 0 and 1, 
respectively. Similarly, variables Sl' S4 (translations of v2 ) have the same probability 
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Figure 3.7. Illustration to Example 3.3: probabilistic neutral system. 

distribution: 0.6 and 0.4 for states 0 and 1, respectively. Hence, the given probability 
distribution function is a legitimate behavior function for the specified mask. 

If the system is viewed as a neutral system, the generative uncertainty R (G I G) can 
be calculated by formula (3.48). For the first term, we get 

R(C) = - 2 x 0.2 log2 0.2 - 6 x 0.1 log20.1 = 0.9288 + 1.9932 = 2.922. 

The second term depends on the generative order and the corresponding generative 
mask. The two possible generative orders are illustrated in Figures 3.7c and 3.7d. For 
the generation from the left to the right, we obtain 

R(G) = -0.510g2 0.5 -0.1log2 0.1-2 x 0.2log2 0.2 

= 0.5 + 0.3322 + 0.9288 = 1.761, 

R(G I G) = R(C) - R(G) = 2.922 -1.761 = 1.161. 
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For the other generating order (Figure 3.7d), we get 

H(G) = - 2 x 0.3 log2 0.3 -0.4log2 0.4 

= 1.0422 + 0.5288 = 1.571, 

H(GIG) = 2.922-1.571 = 1.351. 

Hence, if we are allowed to choose either of the two generating orders. the first one 
(Figure 3.7c) is preferable since it has a lower generative uncertainty. Since log21 G I = 2 
in this example, we obtain normalized values of the calculated generative uncertainties 
by dividing each of them by two. 

In some situations, only one of the generating orders is applicable. For instance, if 
the support is time, only one of the orders is meaningful in each case depending on the 
purpose for which the behavior system is employed. If it is employed for prediction, 
states must be generated in increasing order of time (from left to right); if it is employed 
for retrodiction, states must be generated in decreasing order of time. In this example, if 
the support is time, then it is easier to predict future states than to retrodict past states of 
the system. 

Assume now that VI is viewed as an input variable and that the corresponding 
directed system is derived from the behavior function in Figure 3.7a. Then, formula 
(3.49) can be used for calculating the generative uncertainty. H (C) was calculated before; 
H(E x G) depends on the generating order. In either case, E is represented by states of 
variables S2' S3; G is represented by states of either SI (increasing order of support) or S4 

(decreasing order of support). In the former case, H(E x G) is the uncertainty 
associated with variables S I' S2' S 3: 

H(E x G) = -0.4log2 0.4 -6 x O.llog20.1 

= 0.5288 + 1.9932 = 2.522, 

H(GIE x G) = H(C) -H(E x G) = 2.922 -2.522 = 0.4. 

In the latter case, it represents the uncertainty of variables S2' S3' S4: 

H(E x G) = -0.3log2 0.3 -3 x 0.2log2 0.2 -O.llog2 0.1 

= 0.5211 + 1.3932 + 0.3322 = 2.2465 

H(G1E x G) = 2.922 -2.2465 = 0.6755. 

Hence, it is again easier to predict than to retrodict. 
Assume now that no information about the input variable VI is available or, ifit is 

available, that it is not relevant (e.g., when VI is controlled by the investigator). In this 
case, all calculations must be made in terms of the conditional probabilities! (ele) given 
in Figure 3.8a. As indicated in this figure, the probabilities as listed form four blocks, one 
for each state e. Uncertainties for each of these blocks are given in Figure 3.8a. The 
partition of the mask into {Me' M i} is shown in Figure 3.8b. 
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Figure 3.8. Illustration to Example 3.3: probabilistic directed system. 
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The situation for generating states from the left to the right is illustrated in Figure 
3.8c, including the values of H (G I e) for each individual state e. Applying formula (3.50), 

H(GIE x G) = *(3.522 -2.7219) = 0.200025. 

The other generating order is illustrated in Figure 3.8d, and 

H(GIE x G) = * (3.522 -0.971) = 0.63775. 

~ Let us now discuss the generative uncertainty for systems characterized by 
possibility distribution functions. Let II denote the set of all possibility distributions 
with at least one nonzero value that can be defined on finite sets of alternative outcomes 
(possibility distributions solely with zero values are not meaningful for our purpose). 
Then, a possibilistic measure of uncertainty is a function 

U:ll ...... [0, (0) (3.51) 

that possesses appropriate properties. To be able to discuss these properties, several 
concepts associated with possibility distributions must be introduced first: 

1. A possibility distribution, say 

(3.52) 

on a finite set X of alternative outcomes x is called a normalized possibility distribution if 
and only if 

max <Pi = 1; 
i 

clearly, <Pi = f(x) for some one-to-one correspondence between N ixi and X. 
2. For each possibility distribution f, say given by (3.52), and each real number 

IE [0, 1], let 

c:ll x [0, 1] ...... &1(N) 

be a function such that 

this function is called an I-cut function and the set c (f, I) is called an I-cut of f. 
3. Given a possibility distribution (3.52), let 

(3.53) 

(3.54) 

(3.55) 
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be called a level set off Let 

denote the level set of f, where 11 = 0, q = iLfi, and i <j implies Ii < Ij • For 
convenience, let 

If = max <Pi· 
i 

Clearly, If = Iq ELf; further If = 1 if and only if f is a normalized possibility 
distribution. 

4. For every mE N, let 

If= e<PiliENm)En 

2f= e<PiliENm)En 

be two possibility distributions. Then, I f is called a subdistribution of 2f if and only if 

Let If ~ 2f be used to indicate that I f is a subdistribution of 2f. The relation" I f is a 
subdistribution of 2f" is clearly a partial ordering defined on each set of possibility 
distributions with some particular number m of elements, say set mn. Further, (mn, ~ ) 
is a lattice with join and meet defined, respectively, as 

for each pair If, 2fEmn. 
Equipped with the concepts necessary for a discussion of possibility distributions, 

we can now return to the main issue-the measure of possibilistic uncertainty. 
Intuitively, it is desirable that possibilistic counterparts of the properties (Hl}-(H5), 
which are possessed by the Shannon entropy, be also possessed by the possibilistic 
uncertainty measure. The possibilistic conterparts of the properties can be formulated 
in the same way as (Hl}-(H5), but the word "probability" must be replaced with the 
word "possibility." A function of the form (3.51) that satisfies all these properties is 
known and can be defined either in the form 

(3.56) 
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or in the simpler form 

1 ill V (f) = I log21c(f, 1)1 dl. 
f 0 

(3.57) 

This function is referred to as the V-uncertainty. Besides the possibilistic counterparts 
of properties (H1)-(H5), the V-uncertainty has some additional desirable properties. 
The most important of them is the property of monotonicity: for every pair If, 
2fE mn(mEN), if If~ 2f, then Vef) ~ Vef), 

Example 3.4. Calculate the V -uncertainties of the following possibility 
distributions: 

The level sets are 

If = (0.1, 0, 0.5, 0.8, 0.8, 0.8, 0.1, 0.7, 0.8), 

2f = (0.3, 0.2, 0.9, 1, 1, 1,0.9,0.8, 1). 

L'f= {O, 0.1, 0.5, 0.7, 0.8}, 

L If = {O, 0.2, 0.3, 0.8, 0.9, 1}. 

Using either Eq. (3.56) or Eq. (3.57), we obtain 

1 
V (I f) = 0.8 (0.1 log2 8 + 0.4log2 6 + 0.2 log2 5 + 0.1 log2 4) 

= 1.25(0.3 + 1.034 + 0.464 + 0.2) = 2.4975, 

Vef) = 0.21og2 9 + 0.11og2 8 + 0.51og2 7 + 0.11og2 6 + 0.11og2 4 

= 0.634 + 0.3 + 1.404 + 0.258 + 0.2 = 2.796. 

As in the case for probability distributions, it is reasonable to assume that each 
finite set X of alternative outcomes under consideration is characterized by a particular 
(unique) possibility distribution. Then, to emphasize the set for which the uncertainty is 
calculated, it is convenient to use V(X) as a shorthand notation for V(f(X)IXEX). 

It is easy to show that 

o ~ V(X) ~ log2 lXI, (3.58) 

which is analogous to (3.38). The lower bound is reached when possibilities of all 
outcomes except one are equal to 0; the upper bound is obtained when possibilities of all 
outcomes are equal (and, of course, nonzero). The ratio 

U(X) = V(X)/log2 IX 1 (3.59) 
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is a normalized V-uncertainty, for which we get 

0:::;; U(X):::;; 1. (3.60) 

It is also known that a conditional V-uncertainty V (YI X) can be calculated without the 
use of conditional possibilities by the formula 

U(XIY) = U(X x Y)-U(Y), (3.61) 

which has exactly the same form as its Shannon entropy counterpart. This conditional 
U -uncertainty becomes normalized when divided by log21X I 

In the same manner as for probability distributions, let the symbols 

!(C), !(gliO, !(ele), !(gle, g) 

denote possibilities defined by (3.18), (3.22), (3.26), (3.28), respectively. In addition, the 
marginal possibilities are defined by 

!(g) = max !(c) (3.62) 
c>-g 

for neutral systems, and by 

f(gle) = max !(ele) (3.63) 
e>-g 

for directed systems. 
The definition of conditional possibilities in terms of joint and marginal 

possibilities is a controversial issue in possibility theory. Fortunately, this controversy 
can be avoided by using formula (3.61). The possibilistic counterparts of the key 
formulas (3.48), (3.49), (3.50) are then, respectively, 

U(GIG) = U(C)-U(G), (3.64) 

V(GIE x G) = U(C)-V(E x G), (3.65) 

V(GIE x G) = I!I [I U(E Ie) - I V(G Ie)]. (3.66) 
eeE eeE 

No calculation of conditional possibilities is needed when these formulas are used. The 
conditional possibilities! (e I e) that are needed for the calculation of V (E I e) are given 
(or derived directly from data), but they are not calculated from the joint and marginal 
possibilities; possibilities !(gle) are marginals of !(ele) and are calculated by (3.63). 
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Example 3.5. Consider the situation characterized in Figure 3.9, where J(c) is a 
possibility of state c. We can see that J(g) is the same for both generating orders. Using 
formula (3.64), we get 

U(C) = 0.25 logz 5 + 0.25 logz 3 + 0.5 logz 1 = 0.58 + 0.396 = 0.976, 

U(G) = 0.5 logz 2 + 0.5 logz 1 = 0.5, 
- -

U(GIG) = U(C)-U(G) = 0.976-0.5 = 0.476. 

Assume now that variable VI is viewed as an input variable and the following 
possi bili ties J (e Ie) are given: 

SI S2 S3 J(ele) 

0 0 0 1.0 
0 0 1 0.25 

0 0 0.5 

0 1 0.5 
1.0 

S 1 S, 5 , f(e) 

c= 0 0 0 1.0 p= - 1 0 
0 0 0.25 
0 0.25 "[dt-' 1 0 0 0.5 

1 0.5 v2 1 3 

(a) (b) 

2 

'-' 
g .. 

~ 
3 generat ing 

generating 1 3 
order 

order 

- f(g) 
g f(g) g 

0 1.0 
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1 0.5 0.5 

(c) (d) 

Figure 3.9. Illustration to Example 3.5: possibilistic neutral system. 
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Then, U(GIE x G) is calculated by formula (3.66). When the generating order is from 
the left to the right or vice versa, we obtain, respectively, 

o 
1 

o 
1 

o 
o 
1 
1 

f(j~le) 

1.0 
0.5 

0.5 
1.0 

o 
o 
1 

1 

For the former generating order, we thus obtain 

o 
1 

o 
1 

f(j~le) 

1.0 
0.25 

0.0 
1.0 

U(GIE x G) = to.146 -1) = 0.073; 

for the latter generating order, the uncertainty is 

U(GIE x G) = t(1.146 -0.25) = 0.448 ..... 

It is well known that the average amount of uncertainty associated with a finite set 
of alternative outcomes, as measured by either the Shannon entropy or the U
uncertainty, can also be interpreted as the average amount of information expected 
from an experiment which involves the set. However, when a measure of uncertainty is 
adopted as an information measure, only the syntactic aspects of information, not its 
semantic or pragmatic aspects, are in fact measured. 

3.6. SEARCH FOR ADMISSIBLE BEHAVIOR SYSTEMS 

Facts do not arrange themselves. 
-ROBERT M. HUTCHINS 

Equipped now with the uncertainty measures, through which the degree of 
determinism is expressed, we return in this section to the problem type introduced in 
Section 3.4: given a data system D with a totally ordered parameter set and a largest 
acceptable mask M compatible with D, determine all behavior systems that satisfy the 
misfit, determinism, and complexity requirements, with the misfit requirement given a 
precedence over the other two. 

As discussed previously, each largest acceptable mask M contains a set of 
meaningful masks, each of which is a subset ofM. A behavior function (of the particular 
kind considered) that fits perfectly with the data can be obtained for each mask by an 
exhaustive sampling of the data. In practice, however, it is sufficient to perform the 
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sampling only for M. Behavior functions of its submasks can then be determined by 
calculating the appropriate projections of the behavior function corresponding to M. 

Given a behavior function fB' defined in terms of overall states of some sampling 
variables, any of its projections is another behavior function that conforms to fBin terms 
of substates based on a specific subset of the sampling variables. Let Sk (k E N IMI) be the 
sampling variables in terms of whose states fBis defined; M indicates the mask through 
which the sampling variables acquire their meanings. Let [fB ! Z] denote a projection 
of fB' where Z denotes a subset of the set N IMI of identifiers of the sampling variables, 
i.e., ZeN IMI. Then, 

[fB!Z]: XSk-+ [0,1] (3.67) 
keZ 

such that 

[fB !Z](x) = a({flc) Ie >- x}) (3.68) 

where a is some aggregation function that is determined by the nature of the function fB. 
For instance, 

[fB! Z] (x) = L fB(C) (3.69) 
c> x 

when fB is a probability distribution; ~ for possibility distributions, 

[fB! Z] (x) = maxfB(c). (3.70) 
c>x 

In the context of any particular problem, let lfBdenote the behavior function of the 
largest acceptable mask M and let iJB (i = 2, 3, ... ) denote behavior functions of its 
various meaningful submasks iM, each associated with some set iZ c N IMI of identifiers 
of sampling variables ..... 

Except for very small data, it is computationally simper to determine behavior 
functions by projections rather than by sampling the data. The larger the data, the more 
computing time is saved when sampling is replaced by taking projections. It is thus 
desirable to perform the sampling only once, for the largest acceptable mask, and then 
determine the behavior functions of all its meaningful submasks as appropriate 
projections. 

Example 3.6. Determine the projection of the probability behavior function 
defined in Figure 3.7a and the possibility behavior function defined in Figure 3.9a for 
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z = { 1, 2} in both cases. Using formula (3.69) for the probability function, we obtain 

SI S2 [f !{1,2}](x) 

x= 0 0 0.5( = 0.2+0.2+0.1) 
0 1 0.1 
1 0 0.2( = 0.1 +0.1) 
1 1 0.2( = 0.1 +0.1) 

For the possibility function, we use formula (3.70) to obtain 

SI S2 [f !{ 1, 2}J (x) 

x= 0 0 1.0 
0 1 0.25 
1 0 0.5 
1 1 0.5 

The given data system D, largest acceptable mask M, and the misfit requirement 
lead to the restricted set 

y,. = {iF B= (I, iM, 1)1i = 1,2, ... , N(n, ~M)}, 

which contains one behavior system for each meaningful mask, iM £; M; for notational 
convenience, let 1M = M. The next step in dealing with the problem under discussion 
must be the calculation of the degrees of nondeterminism and complexity for each 
system in the set Y,.. 

As argued in Section 3.5, the degree of non determinism is defined by an appropriate 
measure of generative uncertainty, which for probabilistic or possibilistic systems is 
expressed by the Shannon entropy or V-uncertainty, respectively. The definition of 
generative uncertainty requires that a generating order (and the corresponding 
partition of each mask) be defined. If several generating orders are permitted, we accept 
for each mask only those with the smallest generative uncertainty. 

As far as the complexity measure is concerned, many options are available (as 
discussed in Chapter 6). For the purpose of illustration, we adopt a measure that is 
simple yet meaningful and often employed by GSPS users-the size (cardinality) of the 
mask. 

Let iqu (i = 1, 2, ... ) denote values of the appropriate generative uncertainty for 
behavior systems iF B in the restricted set Y,.. Since each system iF B is uniquely 
identifiable by its mask iM, whose cardinality liM I represents its complexity, the status 
of iF B in terms of generative uncertainty and complexity can be conveniently described 
by the pair (I i M I, iqu)' The problem under consideration can thus be discussed in terms 
of masks iM rather than the corresponding behavior systems iF B' 
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The numerical ordering of the cardinalities of the masks i M, which iden tify systems 
c . 

in Y,., imposes a complexity ordering :s; on set Y,.. The numerical ordering of values 'q. 
u 

imposes an uncertainty ordering :s; on Y,.. While the complexity ordering is fully 
determined by the masks themselves, the uncertainty ordering is determined only after 
the masks are evaluated. For any set of generative masks, we may define a partial 
ordering 

(3.71 ) 

(and ie -< ie for directed systems), for which the name "submask ordering" seems 
appropriate. This ordering is often useful in developing various heuristic procedures for 
searching through the systems in set Y,.. 

An example of the complexity and submask ordering is shown in Figure 3.10 for 
the largest acceptable mask M with n = 3 and AM = 2. It is assumed that the generative 
order is from the left to the right. All meaningful submasks of M are specified by their 
matrices and are labeled by their identifiers i at the left top corner of each matrix. They 
are partitioned by their complexities into four blocks. Masks with the same complexity 
are placed at the same level in the diagram. For instance, masks identified by 2-7 form 
one block, associated with complexity 5, masks identified by 8-19 form another block 
with complexity 4, etc. From the standpoint of the complexity ordering, each mask. at 
one level is an immediate successor of each mask at the next higher level and an 
immediate predecessor of each mask at the next lower level. The connections with 
arrows in Figure 3.10 indicate the submask ordering. It is obvious from this example 
that the complexity ordering is a connected quasiordering (reflexive and transitive 
relation in which each pair of systems is comparable). 

The submask ordering is a partial ordering, but it does not form a lattice. 
However, it is a collection oflattices, one for each set of generated sampling variables 
(right-most elements of the masks in our example). 

The uncertainty ordering is connected and, due to the fact that several different 
systems can have equal generative uncertainty, it is not antisymmetric. Hence, it is, 
generally, a connected quasiordering, which becomes a total ordering in some special 
cases. 

Two connected quasiorderings are thus defined on the set Y,. -the complexity and 
uncertainty orderings. It is desirable to combine them in an appropriate manner. Since it 
is required in the problem type under discussion that both complexity and generative 
uncertainty of systems in the solution set YQ be minimized, the relevant combined 

ordering ~ is defined as follows: 

. *. 
'F B:S; JF B 

c . u. 
iff liMI :s; liM I and 'q.:S; Jq., (3.72) 

where iF B, iF BEy". This ordering is not connected since pairs iF B, iF B for which 
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(such pairs are certainly possible) are not comparable. It is not anti symmetric since the 
possibility of 

for some i =fo j is not excluded. Hence, the combined ordering (3.72) is a general 
quasiordering (reflexive and transitive relation) on Y,.. 

The solution set YQ can now be defined as the set of all systems in Y,. that are either 
equivalent or noncom parable with respect to the combined ordering (3.72). Two 
systems in Y,., say systems iF Band j F B' are noncomparable in terms of the combined 
ordering if either of the following is satisfied: 

(a) iF B is more complex and more deterministic than jF B' or 
(b) iF B is less complex and less deterministic than jF B' 

Formally, 

(3.73) 

Let the systems in the solution set YQ be called admissible behavior systems of the 
problem type under discussion. 

Example 3.7. To illustrate the various issues discussed in this section, let us 
consider the ethological data system described in Example 2.5 (and Figure 2.7). Let us 
determine all behavior systems that are admissible in the sense of (3.73) for this data 
system under the assumptions that the user wants to characterize the behavior systems 
in the probabilistic manner and to utilize them for prediction. 

Assume first that ~M = 2. Then, there are eight meaningful masks, which are 
shown in Figure 3.l1a together with their submask ordering and the indication of the 
three levels of complexity. After exhaustive sampling is performed for the largest 
acceptable mask 1M = M, probabilitiesfB(c) are calculated from the frequencies N(c) 
by a formula specified by the user, and the generative uncertainty is calculated either by 
formula (3.45) or by the more convenient formula (3.48). If formula (3.31) is used for 
calculating the probabilities, the generative uncertainty becomes 1.11. Appropriate 
projections are then determined by formula (3.69) for the remaining seven meaningful 
masks and their generative uncertainties are calculated. The results are shown in Figure 
3.11 b (at the right bottom corner of each mask), together with the uncertainty ordering. 
We can see that it is a total ordering in this example since all of the masks have different 
uncertainty values. The combined complexity and uncertainty ordering (3.72) is shown 
for this example in Figure 3.11c. We can see that the minimal masks with respect to this 
combined ordering are those identified by 1, 2, 6. Hence, YQ = e F B, 2F B, 6F B}' 

Assume now that ~M = 3. Then, according to formula (3.36), there are 40 
meaningful masks. After they are processed in the same way as described for ~M = 2, 
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Figure 3.11. Illustration to Example 3.7. 
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we obtain five admissible behavior systems whose masks, complexities, and generative 
uncertainties are given in Figure 3.l2a. All remaining 35 masks are inferior from both 
the complexity and uncertainty points of view and thus need not be considered at all. 
Figure 3.12a is a typical example of GSPS responses to users' requests. Various 
additional characteristics of the solution set can also be provided, if requested, such as 
the plot of uncertainty versus complexity shown in Figure 3.12b. 

There are many different realizations of the search for admissible behavior systems 
outlined here. The basic principle is that the meaningful masks are derived by some 
algorithm from the largest acceptable mask in decreasing order of complexity. In each 
block of masks with equal complexity, only those with minimal generative uncertainty 
are accepted. If the value of this minimal uncertainty is smaller than or equal to that at 
the previous level of complexity, then all previously accepted systems are discarded. At 
the end of this procedure, we are left with only the admissible systems. 

It is important to realize that this problem category is a theme on which there exist 
many variations. For instance, probabilities or possibilities can be calculated in a 

i MASK liMI iH(GIG) 

1 00 6 0.41 
2 4 6 

@ffij 2 5 0.55 
2 4 6 

@Hj 3 4 1.07 
2 4 

iH(G/G) 

4 

~ 
c 

4 Ettj 3 1.88 

5 EEffi 2 3.38 

.~ 3 

'" u 
c 
~ 2 

1 
1 

0 
2 
----I~~ Complexity 

(a) (b) 

Figure 3.12. Admissible behavior systems in Example 3.7. 
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number of different ways, a variety of definitions of complexity can be used, additional 
requirements may be imposed such as a largest acceptable uncertainty or preference for 
masks with small depths, complexity and uncertainty (as well as additional require
ments) may be weighted by the user when the combined ordering is defined, etc. These 
variations are basically minor methodological distinctions. The GSPS should be 
designed in such a way that it has a number of standard options for each key problem 
category, one of which is adopted as default option, but at the same time it should give 
the user as much freedom as possible to define his own problem variations. 

3.7. ST A TE-TRANSITION SYSTEMS 

The most fundamental concept in cybernetics is that of " difference," either that two 

things are recognisably different or that one thing has changed with time. 

-W. Ross ASHBY 

Assume again that a data system is given whose support set is totally ordered. It is 
argued in Section 3.2-3.6 that the data system can be characterized in a support
invariant manner by a set of admissible behavior systems, which conform to the data 
system and satisfy requirements specified by the user. Although behavior systems are 
fully adequate to characterize the overall constraint among the variables investigated, 
there is an alternative form of expressing the constraint, which is often preferred by the 
user. This form, which is usually called a state-transition relation (or ST relation, in 
abbreviation) is defined in terms of pairs of successive states of sampling variables 
rather than single states; generative systems that use this form are called state-transition 

systems (or ST-systems). 
~ Masks, sampling variables, state sets of sampling variables, and their Cartesian 

product C are defined for ST-systems in exactly the same manner as for behavior 
systems, except for two differences: (1) the distinction of generated and generating 
sampling variables is not applicable to ST systems and, (2) meaningful masks for ST
systems are subject to an additional restriction (as explained later). The counterparts of 
behavior functions in ST-systems are state-transition functions (or ST-functions). Their 
domain is C2 = C X C rather than C for neutral systems, and E2 x E 2 rather than E 

x E for directed systems. 
For neutral systems, the state-transition counterparts of the behavior functions 

defined by (3.18), (3.22), (3.16) are, respectively, the following ST-functions: 

(3.74) 

wheref(e, e') is the probability or possibility (or some other characterization) that state 
e' follows immediately after state e (according to the chosen generating order); 

(3.75) 
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where iGS (e, e') is the conditional probability or possibility that the next state is e' given 
that the present state is e and, consequently, the conventional symboliGs (e'le) will be 
used; 

iGs: C -+ C, (3.76) 

where iGs(e) = e', i.e., the next state e' is uniquely determined by the present state e; the 
special form (3.76) of fas is, of course, applicable only to deterministic systems. Let 
functionsiGs be called generative ST-functions. 

The state-transition counterparts of the neutral behavior systems (3.10) and (3.15) 
are, respectively, the ST-system: 

F s = (I, M,!,) (3.77) 

and the generative ST-system 

F GS = (I, M G, iGs), (3.78) 

where I, M, M G have the same meaning for both behavior and ST-systems. 
Given a data system and a mask, the ST -function!, that fits perfectly with the data 

system for the mask can be determined by an exhaustive sampling of the data in a 
similar way as explained for the behavior function iB. The only difference is that 
frequencies N(e, e') of pairs of successive states result from the sampling rather than 
frequencies N(e) of the individual states. 

A pair (e, e') E C2 is called a transition from state e to another state e' according to 
the declared generating order in the support set. One of the basic properties of ST
functions is that transitions to a state must balance with those from the same state. 
When probabilities are used, we have for each state x E C 

I is (e, x) = iB(X), (3.79) 
ceC 

I is (x, e') = IBeX) 
c'eC 

and, hence, 

I is (e, x) = I is(x, e'), (3.80) 
ceC c'eC 

which expresses the transition balance. If possibilities are used, Eq. (3.80) becomes 

maxis (e, x) = maxis (x, e'). (3.81) 
ceC c'eC 

States e, e' may be viewed as states defined by two related masks M, M', 
respectively. The masks are related to each other by a simple translation of the 
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translation rules involved: 

itT (Vi' p+ l)EM', (3.82) 

when the data generation proceeds in increasing order of the support, or 

itT (Vi' P - l)EM', (3.83) 

when the data generation proceeds in the opposite order. The two masks M, M' are 
used simultaneously to characterize pairs of states c, c'. 

In order to avoid either inconsistency or incompleteness in generating data, 
meaningful masks of ST -systems must satisfy the following requirement (in addition to 
the mask requirements for behavior systems): 

• given a mask M, if (Vi' pdEM and (Vi' P2)EM, where PI < P2' then 
(Vi' p)EM for all integers P such that PI S P S P2' 

This means that masks ofST-systems must not involve "gaps" such as the element (V4' 

-1) in Figure 3.2. Let any mask that satisfies this additional requirement be called a 
compact mask. 

To justify this requirement assume that mask M of an ST-system is not compact. 
Then, there is at least one pair of elements in M, say pair 

such that PI < P2' 

(Vi' PI + l)¢M, (Vi' P2 + l)¢M, (3.84) 

and P2 2 P for all (Vi' p)EM. By (3.82), we get 

(Vi' PI + l)EM' and (Vi' P2 + l)EM'. (3.85) 

Let sampling variables based on these elements of M' be denoted by SI and Sz, 

respectively. States of SI' S2 are components of c'. As such, they must be either 
determined for each support instance by state c or generated according to the 
probability or possibility distributionfGs(c' Ic) for each particular c. However, neither 
of these alternatives is possible for S I' Due to (3.84), it cannot be determined by state c.1t 
cannot be generated at any support instance t in a consistent manner since 

and SI is thus committed to the state of variable S2 at support instance t - (P2 - PI)' There 
is no guarantee that a generated state of S 1 would be consistent with this predetermined 
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state. If, on the other hand, no state of s 1 is generated, then c' becomes iacomplete since 
the predetermined state is not known (i.e., it is not a component of c). Consequently, the 
state of slat any value of t can neither be determined from c nor generated according to 
the generative ST-function. 

This justification that masks with "gaps" are not acceptable for ST-systems is 
illustrated by an example in Figure 3.13: component Y 4 of the next state c' for support 
instance t (Fig. d) can be neither determined from c at time t (Fig. c) nor generated by an 
ST-function since it was generated at support instance t - 3 (Fig. a). 

A convenient representation of the ST-functions (3.74) or (3.75) are square matrics 
whose rows and columns are associated, respectively, with c and c'. Their entries are 
values fs(c, c') or fGs(c' I c), respectively ..... 

Example 3.8. Hardware monitoring is one approach to computer performance 
evaluation whose significance seems to grow with the increasing complexity of the 
computer systems evaluated. In hardware monitoring, certain key variables, each 
usually describing the status of a particular unit of the computer system, are observed 
(by instruments called hardware monitors), within a specified period of time, while the 
computer system is serving its users. The data are processed by the hardware monitor 

c for t ·2 (= c ' for t-3) 

t-2 (a) 

t-1 (b) 

c for t (=c' for t·1) 

(e) 

c for t +1 (= c' for t ) 

t+1 (d) 

Problem ati c component of c' Generated 

Figure 3.13. Illustration of the inconsistency or incompleteness problem for ST-systems with 
noncom pact masks. 
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and analyzed with the aim of finding bottlenecks in the system and ways of increasing its 
performance, defined in some manner. 

Hardware monitors are usually equipped with counters which, during the data 
gathering process, either count event occurrences (count mode) or measure time 
durations of events (time mode). This means that the hardware monitor normally 
provides the investigator with a summary of the data rather than with the actual data. 
For instance, the monitor specifies that the CPU (central processing unit) of the 
computer system was active 43 % of the time during the observation period, that 
channel x was busy in 15 % of all observations, etc., but does not make the actual 
sequence of observed events available for further processing and analysis. 

Valuable information, which may help to better understand the computer 
performance issue at hand, is frequently lost in this process. In particular, dynamic 
aspects of the situation are completely lost. 

In the GSPS spirit, all observations should be recorded and then processed in any 
desirable way (see Figure 3.1). In this example, 409, 610 observations made in time were 
recorded for four variables VI' V2, V3 , v4 . Each of the variables has two states, 0 and 1, 
which characterize the status of a particular hardware unit in the computer system: 0 
means that the unit is not active at the time of observation while 1 means that it is active. 
Variable VI represents the activity of the CPU, the other variables represent activities of 
three communication channels of particular interest in the computer system. The huge 
data set of over 1.6 million bits was sampled for two successive states by the memoryless 
mask with the objective to determine a probabilistic ST-function. This led to the 15 
states specified in Table 3.5a and 113 transitions. States 7-15 appeared with very low 
frequencies: the probability that the system was in any of these states is only 0.009. Ifwe 
aggregate these states into one state (as discussed in Section 3.9), to simplify the ST
function (as demanded by the investigator), we obtain a matrix representation of the 
generative ST-function fGS in Table 3.5b. Entries in the matrix are conditional 
probabilities JGs(e'le). Symbol'" 0 is used in the matrix for probabilities that are 
negligible but not zero; 0 stands for transitions that were not observed at all. Underlined 
in the matrix are probabilities of each transition from a state to itself. Also shown in 
Table 3.5b is a column vector of valuesfB(e) of the behavior functionfB for the same 
(memoryless) mask, which would normally be the result of hardware monitoring. 
Clearly, 

(3.86) 

so that values f. (e, e') can be calculated if necessary for some further processing. While 
the determination of the illustrated function fGS or any other desirable representation 
of data collected for appropriate source systems defined on the computer complexes 
evaluated is within the domain of the GSPS, the interpretation of these results must be 
made by specialists in computer performance evaluation. 

In some cases, a visual representation of the ST -function in the form of a diagram is 
preferable. Such a diagram consists of a set of nodes, one for each state of the involved 
sampling variables that actually occurs, and oriented connections of the nodes, which 
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TABLE 3.5 
ST Function for a Computer Performance Evaluation Inquiry 

(Example 3.8) 

(a) 

c VI V2 v) V4 C V1 V2 v) V4 

0 0 0 9 0 1 0 
2 0 0 10 0 1 
3 0 11 0 
4 1 1 0 0 12 1 1 
5 0 0 0 0 13 0 1 0 
6 1 0 1 0 14 0 0 0 
7 0 0 0 15 0 0 
8 0 0 0 

(b) 

c' = 2 3 4 5 6 7-15 

c= 1 0.844 0.064 0.004 0.057 0.028 0.002 0.001 0.458 
2 0.173 0.757 0.049 0.011 0.003 ~O 0.007 0.175 
3 0.022 0.093 0.725 0.155 ~O 0 0.005 0.092 
4 0.109 0.008 0.059 0.816 0.001 ~O 0.007 0.242 
5 0.755 0.056 0.002 0.036 0.146 0.001 0.004 0.016 
6 0.103 0.007 0 ~O ~O 0.811 0.079 0.008 
7-15 0.050 0.141 0.054 0.170 0.002 0.063 0.520 0.009 

fGs(c'lcj fB(c) 

represent actual transitions. Nodes in the diagram must be labeled by the respective 
state identifiers e and connections marked with values of fs(e, e') or fGs(e'le); in the 
latter case, it is desirable to also mark the nodes with values fB(e) so that values fs(e, e') 
may be calculated, if necessary, by Eq. (3.86). 

Example 3.9. ST-systems are often convenient for a concise description oflegal 
constraints associated with various law-making bodies such as local, state, or federal 
government. The diagram in Figure 3.14 represents a crisp possibility ST-function that 
describes the constraints of the u.s. legal system on making the needs and desires of 
citizens (abbreviated as 0) into a new law. The ST-system is based on the memoryless 
mask and its image system consists of the following seven basic variables and their state 
sets: 

VI -political attractiveness (0, low; 1, high); 
V 2 - D possesses congressional sponsor (0, no; 1, yes); 
V3 - house of representatives status of D (0, failed or not considered; 1, passed with 

simple majority; 2, passed with two-thirds majority); 
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Figure 3.14. ST-diagram of the U.S. legal system (Example 3.9). 

v4 - senate status of D (0, failed or not considered; 1, passed with simple majority; 
2, passed with two-thirds majority); 

vs-president's approval of D (0, no; 1, yes); 
V6 - D is tested in court (0, no; 1, yes); 
v7 -legal status of D (0, none; 1, bill; 2, statute; 3, law). 

The support is time and it is defined implicitly by changes in states of the variables. 
Nodes in the diagram are labeled by the overall states of the variables in the order 

v 1, V2' ••• ,v7 . Neither nodes nor connections are marked since it is natural in this case 
to dichotomize all states and transitions into possible (i.e., allowed by the current law) 
and impossible (i.e., prohibited by the law) and to represent only the former by the nodes 
and connections in the diagram. Hence, states and transitions that are shown in the 
diagram have a possibility degree 1, while all the other states and transitions have a 
possibility degree 0. 

The diagram in Figure 3.14 describes only the legal constraints. It does not indicate 
the difficulty that is likely in making each individual transition. Data regarding previous 
instances of D can be employed for expressing the difficulty in terms of degrees of 
possibility in the range [0, 1]. For a particular D and specific political and other relevant 
circumstances, degrees of possibility can also be determined for the individual 
transitions subjectively, by the opinion of an expert (or a group of experts). 
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~ Every ST -system can be converted easily into an isomorphic behavior system. To 
demonstrate how this conversion can be made, let an arbitrary ST -system. 

F s = (I, M,fs) 

be given, where M is, of course, a compact mask. Assume that each next state 
corresponds to a larger value of the support than the corresponding present state. 
Consider now a behavior system 

FB = (I,M+'IB), 

where M + is defined in terms of M as follows: 

(V;. p)e M+ when (v;. p) e M or (Vi' p - l)e M (3.87) 

Then, for any set of data regarding the common image system I, all samples of the data 
that yield the same pair of states for mask M, say pair (c,c'), yield also the same state for 
mask M + , say state c + • If the data are exhaustively sampled by both of the masks, the 
frequencies of c, c' and c + must be exactly the same. Hence, 

where state c + e C + consists of c and the generated part of c', say c~. Behavior functionlB 

is thus equivalent to the given ST -function Is under the one-to-one correspondence 

(3.88) 

where y(c, c') = c+ if and only if c+ = c, c;. 
Let mask M + defined by (3.87) be called an extended mask of M. It is based on the 

assumption that states are generated in increasing order of the support. If the generating 
order is inverted, an alternative extended mask, say mask + M, is defined in a modified 
manner: 

(3.89) 

It can be shown, by arguments analogous to those used for M +, that behavior system 

is isomorphic to a ST-system defined in terms of the same image system I and mask M. 
The correspondence between masks M, M +, as well as M, + M, is illustrated'in 

Figures 3.l5a and 3.l5b, respectively. Also illustrated in the figures are the one-to-one 
correspondence (3.88) and its counterpart for the mask + M and + c e + C. 
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+ 1M M' 

l 
I 

+ c=c,c~ .. 
Generating Order Generating Order Generating Order 

(a) (b) (e) 

Figure 3.15. Isomorphism between behavior systems and ST-systems. 

Given a behavior system 

F B = (I, M,fB), 

an isomorphic ST-system based on the same image system I exists only under the 
conditions that M is a compact mask and IMd ~ 2 for each of its submasks Mi' If these 
conditions are satisfied, then it is obvious that the ST-system 

Fs = (I,Mg,!.), 

where M g is the generating part of M (according to the specified generating order), is 
isomorphic under an appropriate one-to-one correspondence between state sets C 
(based on M) and G x G (based on M g), This conversion from a behavior system to the 
isomorphic ST-system is illustrated in Figure 3.ISc for one of the generating orders. 

For directed systems, the state-transition counterparts of the behavior functions 
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defined by (3.26), (3.28), 3.29) are, respectively, the following ST-functions: 

ls.. E2 x E? ~ [0, IJ, (3.90) 

where E has the same meaning as for behavior systems and jde, e' I e, e') is the 
conditional probability or possibility whose meaning follows uniquely from the 
standard notation; 

(3.91 ) 

where jGS (e' I e, e', e) are generative conditional probabilities or possibilities; 

(3.92) 

wherejGs(e,e',e) = e'. 
The state-transition counterparts of the directed behavior systems (3.27) and (3.30) 

are, respectively, the directed S T-system 

..... -. ........... 

F s = (I, M,fs) (3.93) 

and the directed generative S T-system 

(3.94) 

where j and MG have the same meaning as defined for the behavior systems. 
Functions (3.90) or (3.91) are conveniently represented by arrays of square matrices 

(three-dimensional arrays), one matrix for each condition, e, e'. Diagrams similar to 
those for neutral ST-systems are also convenient. For directed systems, connections in 
the diagrams are marked not only with values of the relevant ST-function, but also with 
the conditions e, e'. Functions (3.92) can be represented by matrices in which rows and 
columns characterize states e and e, e', respectively, and entries are appropriate states e'. 
They can also be represented by diagrams, tables and, in some cases, algebraic 
formulas ..... 

Example 3.10. A simple directed ST-system (with no interpretation) is defined in 
Figure 3.16. Its image system consists of input variable VI and output variable V2 , each 
with two states, 0 and 1. Mask M of the system is defined in Figure 3.16a and the relevant 
state components created by its two successive positions on the data matrix are shown in 
Figure 3.16b. Functionsjs andjGs are defined in Figures 3.16c, and 3.16d, respectively, in 
the three-dimensional array form. The array consists of two matrices in this example. 

Example 3.11. A deterministic directed ST -system by which the metabolism of 
bacteria of a certain class is characterized from the standpoint of biochemistry was 
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(a) (b) 

e'= 00 01 10 11 e'= 00 01 10 11 

e= 00 0.1 o o o e=OO o o o 

01 0 o 0.15 0.25 e = 01 01 o o 0.375 0.625 e = 01 

10 0.2 0.2 o o e' = 10 10 0.5 0.5 o o e' = 10 

11 0 o 0.05 0.05 11 0 o 0.5 0.5 

e'= 00 01 10 11 e'= 00 01 10 11 

e=OO 0 0.3 o o e=OO 0 o o 

01 0 o 0.2 o e = 10 01 o o o e = 10 

10 0.1 0.1 o o e' = 01 10 0.5 0.5 o o e' = 01 

11 0 o 0.2 0.1 11 o o 

(c) (d) 

Figure 3.16. Three-dimensional array representation of a directed ST-system (Example 3.10). 

developed by Krohn et al. [KR3]. The bacteria are considered as composite 
multienzyme collections and the metabolism is viewed as the set of all possible 
sequences of biochemical reactions within the bacteria. 

The mask in this example is memoryless. A diagram of the ST -function in the form 
(3.92) is given in Figure 3.17. States of output variables (denoted by numbers in 
Figure 3.17) represent a set of substrates produced by the corresponding chemical 
reactions. States of input variables (denoted by letters) represent coenzymes involved in 
the chemical reactions. A complete list of the transition-producing coenzymes and the 
produced substrates may be found in the paper by Krohn et al. Coenzymes denoted by 
S1, S2, S8, S36, S49 are equal to the substrates produced in states 1, 2, 8, 36, 49, 
respectively. 
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Figure 3.17. ST -function characterizing the metabolism of a class of bacteria. 

Example 3.12. Four hormones are involved in the method of oral contraception: 
follicle stimulating hormone (usually abbreviated F.S.H.), luteinizing hormone (usually 
abbreviated L.H.), estrogen (E), and progesterone (P). Although levels of these 
hormones in the blood of a woman can be measured with high precision, it is not 
necessary to use highly refined data when the subject of interest is birth control based on 
external supply of estrogen by contraceptive pills. A critical threshold level can be 
defined for each of the hormones and it only matters whether the actual level of the 
hormone is below or above the threshold. A variable with two states is thus sufficient to 
characterize each of the hormones. Assume that the variable is in state 0 if the hormone 
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level is below the threshold and it is in state 1 otherwise. The support is time and it is 
defined implicitly by changes in states of the variables. Besides these four variables, 
viewed as output variables, an input variable is included in the system to characterize the 
influence of the contraceptive pills. Assume that this variable is in state 0 if the pills are 
not used and in state 1 if they are used. 

Data matrices for a normal menstrual period with and without the use of the 
contraceptive pills are shown, in Figures 3.l8a and 3.l8b, respectively. Variables VI-V5 

have the following meaning: VI' F.S.H.; V2, L.H.; V3 , E,v4 ,P; vs, contraceptive pills. 
Assume that the mask defined in Figure 3.18 c is used for sampling the data matrices, 
which in this example are periodic (the last column in each of the matrices is followed by 
its first column). When sampling the data matrices for the mask and calculating 
probabilities, we obtain the diagram in Figure 3.l8d. It represents the generative ST
function of the form (3.91). Nodes are labeled with states of the sampling variables SI-S5 

in their natural order. Connections are marked with states of e' (of input variable 

t= 23456 t= 2 3 4 5 6 7 8 9 10 11 12 

VI 0 0 0 1 0 0 VI 0 1 0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

V3 0 0 1 1 1 1 V3 0 0 0 1 0 0 0 0 0 1 1 0 

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 

V, 1 1 1 1 1 1 V, 0 0 0 0 0 0 0 0 0 0 0 0 

(a) (b) 

p = -1 o 

VI 1 2 

3 
0 

0 
00000 10100 

V3 4 

5 
0 0/0 33 0/0.67 0 

V, 6 

01000 11100 

(c) 0/0.5 0/0.5 

(d) 

Figure 3.18. Birth-control system (Example 3.12). 
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V5 = S6 pertaining to the next state) and, if not unique, also by the probability of the 
corresponding transitions. It is assumed that e = e' since data for the other possibilities 
are not available. We can see that the system is deterministic under the condition that 
the contraceptive pills are used as indicated by the boldface connections in the diagram. 
This unique sequence of transitions avoids states at which fertilization may occur. 

Example 3.13. To illustrate the meaning of space-invariance, let us consider two 
examples of mosaic patterns. The first is the usual black and white chessboard pattern 
(Figure 3.19a). Its support set consists of64 squares of the spatial grid. It is described by 
coordinates x and y. Although each of the coordinates is totally ordered, the support set 
is ordered only partially. One variable, say v, is defined on the support set. Its states are B 
(for black) and W (for white). Let vx • y denote the state of variable v for the square with 
coordinate values x, y. Then, sampling variables are defined by the equation 

where Sk. x. y denotes the state of sampling variable Sk for the square with coordinate 
values x, y. Two sampling variables are sufficient to generate states of v in the whole 
support set, e.g., 

Sl,x.y = vx • y , 

S2. x, y = Vx + 1. Y' 

Visual representation of the corresponding mask is shown in Figure 3.19b, together 
with the indication of possible generating orders (basef on the assumption that S2 is the 
generated variable) and the behavior function of the form (3.16), derived from the data 
by sampling. Although S2 is uniquely determined by Sl, the entire column correspond
ing to x = 1 is required as an initial condition, To reduce the initial condition to one 
square (x = y = 1), we employ one additional sampling variable defined by the equation 

S3. x, y = vx • y + 1 . 

The corresponding mask, generating orders, and behavior function are shown in Figure 
3.19c. The generation must start in this case from the top left corner of the spatial grid. 
There are four similar masks with three elements shown in Figure 3.19d. In each of them 
we assume that variable S 1 is the reference variable and at the same time the generating 
variable. Each mask is associated with particular generating orders and requires a 
different initial condition (one of the four corners of the chess board). 

As a second example, assume the same support set and variable, and let the mask 
and generative behavior function [again in the form (3.16)] be defined as shown in 
Figure 3.1ge. Then, the pattern shown in Figure 3.19f is generated by the behavior 
function, provided that patterns in the first row and first column are given as initial 
conditions. In this way, we can generate a two-dimensional spatial pattern from two 
one-dimensional patterns, which in our example happen to be equivalent. 
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Figure 3.19. Illustration of spatial invariance (Example 3.13). 
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3.8. GENERATIVE SYSTEMS 

... relations between percepts are, at least to some extent, creations of the mind 

which are then imputed to the external world. As such, they may be regarded as 

"working hypotheses," or, to use a more direct word, models of how the external 
world is organized. 

-ROBERT ROSEN 

The term "generative system" is used in this book as a common name for any 
system associated with level 2 of the epistemological systems hierarchy. These are 
systems by which the overall support-invariant constraint among variables of interest is 
characterized from different points of view. Four types of generative systems are 
introduced in previous sections of this chapter, each of which can be either neutral or 
directed: 

• behavior systems 

basic: Eq. (3.l0}-neutral; Eq. (3.27}-directed; 
generative: Eq. (3.l5}-neutral; Eq. (3.30}-directed; 

• ST-systems 

basic: Eq. (3.77}-neutral; Eq. (3.93}-directed; 
generative: Eq. (3.78}-neutral; Eq. (3.94}-directed. 

If, in some context, the differences between these four types are of no significance, it is 
convenient to refer to any of them as a neutral or directed generative systelT' and use 
simpler symbols F or t', respectively. 

As argued in Section 3.7, every ST-system can be converted to an isomorphic 
behavior system, while the inverse conversion is possible only for certain masks. Hence, 
behavior systems are more general than ST -systems. 

Two main disadvantages of ST -systems are obvious: their restriction to compact 
masks and their inherent redundancy, which is a result of the overlap of the present and 
next states. This is a property of all masks except those in which only one translation 
rule is defined for each basic variable. As a consequence of these disadvantages, GSPS 
methodological tools for problems associated with generative systems are implemented 
solely in terms of behavior systems. IfST-systems are required by the user, his problem 
is solved in terms of the isomorphic behavior systems and within the additional 
restrictions imposed upon masks by ST-systems. When the problem is solved, the 
resulting behavior systems are converted to the isomorphic ST -systems and presented 
to the user in that form. 

When applicable, ST-systems have certain advantages for users. It seems that 
generative ST-functions are easier to comprehend by the human mind than their 
behavior counterparts. This is probably because the generating and generated states in 
the ST-functions are drawn from the same state set, while they are drawn from two 



www.manaraa.com

SEC. 3.9: SIMPLIFICATION OF GENERATIVE SYSTEMS 149 

different state sets for behavior functions. The equality of the generating and generated 
state sets also makes it possible to use convenient diagrams, as illustrated in Figures 
3.14,3.17,3.18. 

Various methodological distinctions are recognized for generative systems. They 
include distinctions made at epistemologically lower types of systems as well as some 
new distinctions. The most significant among the former are: 

• ordering of the support set, which makes it possible to introduce the 
important concept of a mask; 

• ordering of state sets, which plays an important role in simplification 
procedures for generative systems (Section 3.9) and in dealing with incom
pletely specified data sets; 

• the distinction between crisp and fuzzy observation channels, which leads to 
crisp or fuzzy data, respectively, and requires different methods for data 
processing; 

• the distinction between neutral and directed systems, which must be handled 
in different ways. 

Methodological distinctions that are applicable to generative systems, but not to data 
or source systems, are 

• deterministic versus nondeterministic systems; 
• for nondeterministic systems, various types of fuzzy measure are distinguished 

by which the support-invariant constraint of the variables involved is 
characterized, in particular probability and possibility measures; 

• memoryless and memory-dependent generative systems are distinguished on 
the basis of the mask used. 

These methodological distinctions are, of course, applicable to epistemologically higher 
types of systems as well. 

3.9. SIMPLIFICATION OF GENERATIVE SYSTEMS 

The only way to achieve any accuracy is to ignore most of the information available. 

-PRESTON C. HAMMER 

At some stage in the processing of a given data system, it is often desirable to simplify 
the generative systems that are associated with it at that point. In some instances, a 
simplification is demanded by the user, for whom the existing generative systems are 
too complex to be comprehended. In other instances, it may be demanded by the 
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intended utilization of the generative systems, or it may stem from various meth
odological considerations. 

There are two basic methods of simultaneously simplifying data systems and their 
associated generative systems: 

i. simplification by excluding some variables from the corresponding image 
system; 

ii. simplification by defining equivalence classes of states of some variables. 

~ Assuming that the set of variables ofa generative system, say set V, contains n 
variables, each proper subset of V except the empty set represents a meaningful 
simplification of the first kind. Hence, there are 2n - 2 nontrivial simplifications of this 
kind. They are partially ordered by the subset relationship. If the original set V and the 
empty set are included, for convenience, the simplification set with the partial ordering 
form a Boolean lattice. Let us call this lattice a lattice of variables or V-lattice and denote 
it by ff v. Clearly, the V-lattice can be formulated either as 

ffv= (&,(V), ~) 

or as 

ff v= (&,(V), n, u). 

LetfBdenote the behavior function of a given behavior system with variables in set 
V. When the system is simplified by reducing set V to a subset V', the new (simplified) 
behavior function fB is determined by the projection 

f~(P) = [fB l V'] (P), (3.95) 

defined by Eq. (3.68). 
The second kind of simplification amounts to a reduction of the number of states 

that are recognized for the individual variables. One way of characterizing it is to define 
a function 

(3.96) 

where Vi is a given state set (of variable Vi)' V; is a simplified (reduced) state set for the 
same variable, O"i.j(X) is a new state assigned to the original state x, andj is an identifier 
by which different functions of the form (3.96) are distinguished when applied to the 
state set of the same variable. If O"i.j(X) = O"i.j(Y), then states x and Y of Vi are not 
distinguished under the simplification. To be acceptable, function (3.96) must be 
homomorphic with respect to all mathematical properties in the original set Vi that are 
recognized as relevant to the problem at hand. Let any function of the form (3.96) that is 
homomorphic in this sense be called a simplifying function. 
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Each simplifying function induces a partition on the set Vi' Using the standard 
notation, let this partition be denoted by V;/ui,j' Each partition V;/ui.j consists of 
blocks of states of Vi that are not distingushed under the simplification. Let such a 
partition (which preserves relevant properties in Vi) be called a resolution form. 

Resolution forms defined on a particular state set Vi can be ordered by the usual 
refinement relation defined on partitions of a given set. It is well known that this 
refinement relation is a partial ordering and forms a lattice. Given two partitions, say 
X and Y, defined on the same set, we say that X is a partition refinement of Yif and only 
if for each block x in X there is a block y in Y such that x ~ y. If X is a partition 
refinement ofY, then Yis called a partition coarsening of X. Let the lattice of resolution 
forms defined on a state set Vi be called a resolution lattice of Vi and let us denote it by 
2 Vi' Each resolution lattice on state set Vi can be defined either in the form 

or in the form 

where x and + denote the partition product and sum, respectively. 
If the state set under consideration has no mathematical property to be preserved, 

then each of its partitions is acceptable as a resolution form. The resolution lattice 
contains in this case all partitions that can be defined on the state set. If the state set has 
m states, then the number of resolution forms in the lattice, say Am, is given by the 
formula 

(3.97) 

The tremendous number of resolution forms, even for a small number of states, is 
indicated by the following table: 

m 2 3 4 567 8 9 10 

Am 2 5 15 52 203 877 4,140 21,147 115,975 

Since the least refined resolution form (all states in one block) is not meaningful and the 
most refined one does not represent a simplification, the number of meaningful 
simplifications is Am-2. 

When the state set is totally ordered and it is desirable to preserve the ordering in 
its simplifications, the number of resolution forms is considerably smaller than the 
number given by formula (3.97). Let XI' X 2 , .•. , Xm denote the states and let X k < Xk+ I 

(k = 1, ... , m - 1). Then for each k ~ m - 1, xk and X k + I are either combined or not in 
a block. These decisions alone determine the partition. For m states, there are thus 
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exactly m - 1 binary decisions. Hence, 

(3.98) 

for totally ordered state sets. It is obvious that this lattice for n states is isomorphic to 
the Boolean lattice of the subset ordering on the power set of any set with m - 1 
elements. To see the drastic reduction in the number of resolution forms for totally 
ordered state sets, when compared with unordered state sets, the following table lists 

values of Am based on formula (3.98): 

m 2 3 4 5 6 7 8 9 10 

4 8 16 32 64 128 256 512 

The number of meaningful simplifications is again Am-2. • 

Example 3.14. Let the states of a variable that characterizes the education of a 

person be 

e-elementary education; 
h-{;ompleted high school; 
c-{;ollege degree; 
g-graduate degree. 

Clearly, e < h < c < 9 is a natural ordering of the states and, consequently, there are 
eight resolution forms whose lattice is shown in terms of the Hasse diagram in 
Figure 3.20a. Blocks in the individual resolution forms, which are indicated by the bars 
over the respective letters, can be given appropriate names such as 

cg-{;ollege or graduate degree; 
hc-{;ompleted high school or college; 
eh-no more than high school education; 

ehc-any education except a graduate degree; 
hcg-higher than elementary education. 

The arrows in the diagram indicate the direction of increasing partition refinement. To 
simplify the original system, we have to proceed in the opposite direction. 

For comparison, let states of the variable "the color ofa traffic light" be the usual 
colors, i.e., red, yellow, green. Since they are not ordered, all partitions of the state set are 
acceptable as resolution forms. The Hasse diagram Qf their lattice is given in 
Figure 3.20b, where letters r, y, g stand for red, yellow, green, respectively. 
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ryg 

/t" 
ehcg ehcg ehcg ryg rgy ryg 

_I_X __ X_ "t/ 
ehcg ehcg ehcg ryg 

"t/ 
ehcg 

(a) (b) 

Figure 3.20. Lattices of resolution forms for: (a) a totally ordered set, (b) an unordered set 
(Example 3.14). 

~ Each element of the V-lattice represents a particular selection of variables on 
the original image system. For each variable selected, its resolution lattice contains all 
its possible resolution forms. If several variables are selected, any resolution form for 
one variable can be combined with any of the resolution forms for the other variables. 
All of these combinations can be incorporated in a single lattice representing the chosen 
set of variables. Let us call it ajoint resolution lattice. Mathematically, it is a product of 
the individual resolution lattices. It is defined as follows: 

Let Xl' X 2, ..• ,. X n denote the sets of elements of the individual resolution lattices 
of the variables selected and let X denote the set of elements of the corresponding joint 
resolution lattice. Then, 

and, given two n-tuples 

we define 

if and only if Xj :::; Yj is satisfied for all individual resolution lattices (j = 1,2, ... , n). 
The total number of elements in the joint resolution lattice is clearly the product of 
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the number of elements in the individual resolution lattices, i.e., 

n 

IXI = n IXjl, 
j = 1 

but only some of them are meaningful simplifications. In particular, any combination 
that contains the least refined resolution form (a one-block partition) of any of the 
individual lattices is not meaningful. Also, the combination of all the most refined 
resolution forms does not represent a simplification. Hence, the total number of 
elements in the joint lattice that represent meaningful simplifications, say number IX. I, 
is given by the formula 

n 

IX.I = n (IX j l-l)-I. (3.99) 
j = 1 

For the special case in which all the individual lattices are equal and each contains Am 
resolution forms, we get 

(3.100) 

Furthermore, if all the individual resolution lattices are based on totally ordered state 
sets with m states, we get 

(3.101) 

Example 3.1S. Assume that two variables are selected for a simplification, each 
with three states 0,1,2. Assume further that the states are totally ordered: 0 < I < 2. 
Then, the individual resolution lattices (Xj , ::s; ) are equal and consist off our resolution 
forms ordered as shown in Figure 3.2Ia. Resolution forms of meaningful simplifi
cations are indicated by the encircled symbols in the Hasse diagram. The joint lattice 
(X 2, ::S;) is specified in Figure 3.21b.1t consists of 16 resolution forms, but only those 
indicated by the encircled symbols in the Hasse diagram are meaningful simplifications. 

~ Suppose now that the original system, which is the subject of simplification, 
consists of n variables v l' V2' ... , Vn that are associated with sets Xl' X 2, ••• , X n of 
resolution forms, respectively. Then the total number of meaningful simplifications 
(including elimination of variables), denoted by N (X l' X 2, ... , X n), is given by the 
formula 

n 

N(X 1 ,X2 ,oo.,Xn )= n IX j l-2. 
j= 1 

(3.102) 

This formula is based on the observation that a one block partition of a state set (such as 
partition d in Figure 3.21) can be viewed as an elimination of the corresponding 
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.i a = 012 

1\ b = 012 

c = 01 2 X={a,b,c,d} 

\/ d = 01 2 (X :5) 

d 

(a) 

db 

~~ 
dd 

(b) 

Figure 3.21. Resolution lattice (x, ~ ) and joint resolution lattice (x2 , ~ ) in Example 3.15. 

variable. Then, each element in the joint resolution lattice is a meaningful simplification 
except the least refined and most refined joint resolution forms (aa and dd in 
Figure 3.21 b). If all of the variables have the same set of resolution forms, say set X, 
then formula (3.102) becomes considerably simplified, namely, 

N(X 1 , X 2 , ••• , Xn) = IXln-2. (3.103) 

If, in addition, state sets of the variables are totally ordered and each of them contains m 
states, then 

(3.104) 
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Once it is decided which of the simplifications of a given behavior system to 
pursue, the behavior function of the simplified system must be determined on the basis 
of the behavior function of the given behavior system. If some of the variables of the 
given system are excluded, the projection (3.95) is calculated first. If further simplifi
cation by coarsening resolution forms of some of the remaining variables is required, 
further modifications similar to the projection must be made. First, the coarsenings of 
resolution forms are made as required. This creates blocks of states that are not 
distinguishable under the new resolution forms. Each block is then replaced by one 
state. Its probability (or possibility) is equal to the sum of probabilities (or the largest 
possibility) of all states in the block. 

Example 3.16. Assume that a simplification of the probabilistic behavior 
function in Table 3.6a is required by excluding variable VI and applying the following 
simplifying function to state sets V2 = V3 of variables V2 and V3: 

o 1 
1 1 
2 2 

First, we use Eq. (3.69) to calculate the projection [fB ! {V2' V3 } ] in Table 3.6b. Then, 
we identify blocks of states that are not distinguishable after the simplifying function is 

TABLE 3.6 
Simplification of a Behavior Function (Example 3.16) 

(a) (b) 
V, V2 V3 fB(e) V2 V3 UBH v2,V3}](X) 

e= 0 0 0 0.20 x- 0 0 0.20 } 
0 1 1 0.05 0 0.12 block 
0 2 2 0.04 1 1 0.24 

1 1 0.09 1 2 0.13 
1 2 0.06 2 0 0.15 block 
2 0 0.12 2 1 0.04 
2 0.10 2 2 0.12 
2 1 2 0.07 
2 2 0 0.15 
2 2 1 0.04 (e) 

2 2 2 0.08 V2 V3 fs(}") 

y= 1 1 0.56 
1 2 0.13 
2 1 0.19 
2 2 0.12 
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applied (they are indicated in Table 3.6b). Finally, we add probabilities of states in each 
block and thus obtain the simplified behavior function in Table 3.6c. 

Systems simplification is an important type of systems problem. It can be 
characterized loosely as the process of reducing the complexity (defined in some 
manner) of a system given at some epistemological level while, at the same time, 
preserving as much as possible of the information contained in the system. All problems 
in this class are subsumed under the following general description: given 

• a particular system, say system x, of some epistemological type, 
• a set of systems of the same type that are declared as meaningful simplifications 

of x, say set Yx , and 
• a set of requirements Q regarding some properties of systems in set Yx , 

determine a subset YQ of Yx such that each system in YQ satisfies all requirements in Q. 
To illustrate the class of simplification problems for generative systems, let x be a 

behavior system, let Yx be the set of all meaningful simplifications of x based on the same 
set of variables as x (i.e., behavior systems based on all meaningful joint resolution 
forms derivable from x without excluding any of its variables), and let Q consist of 

i. a requirement that the systems in YQ be as simple as possible; 
ii. a requirement that the degree of generative uncertainty of the systems in YQ be as 

small as possible. 

Let requirements (i) and (ii) be called a complexity requirement and an uncertainty 
requirement, respectively. 

In order to make the complexity requirement specific, a particular measure of 
complexity must be defined for behavior systems. The GSPS should allow the user to 
specify his own complexity measure, but it should also be able to offer the user some 
common options, and should employ one of them as a default option. For the purpose 
of illustration, let the complexity of a behavior system be measured by the number of 
actual overall states of the system, i.e., the number of states with nonzero probabilities 
or possibilities. This is a simple measure yet it is perhaps the most meaningful. As such, it 
is a likely candidate for the default option. Let the symbol 

(3.105) 

be used for this measure of complexity of a behavior system F B' where fB denotes the 
behavior function of F B. 

As far as the uncertainty requirement is concerned, it is expressed in terms of the 
probabilistic uncertainty H(GIG), defined by Eq. (3.45), or the possibilistic uncertainty 
U(GIG), defined by Eq. (3.64). Let kqu and IkfBI (k = 1,2, ... ) denote, respectively, 
values of the appropriate generative uncertainty and the complexity for behavior 
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systems kF B in the set Yx ' Superscripts k may be viewed as identifiers of the underlying 
joint resolution forms of the individual systems kFB • 

The numerical orderings of values kqu and I "fB I impose an uncertainty ordering 
~ and complexity ordering ~, respectively, on the set r.,. In general, these two 
preference orderings conflict with each other. 

Both the uncertainty and complexity orderings are obviously reflexive, transitive 
and connected, but they are not antisymmetric. Hence, they are connected quasiorder
ings. The combined preference ordering :S; is defined as follows: 

iF <:kF B- B (3.106) 

where iF B, kF BE Yx; it is a general quasiordering (reflexive and transitive relation) on Yx ' 

The solution set YQ C r." which is called the set of admissible simplifications of x, 
can be now defined as the set of all systems in Yx that are either equivalent or 
noncomparable in terms of the combined ordering (3.106). Formally, 

(3.107) 

After the set YQ of admissible simplifications of a given generative system is 
determined, the user may employ all systems in YQ as complementary simplifications of 
the original system, may choose one that is most appealing to him, or may use some 
additional criteria to reduce the set. 

The simplification problem type, as formulated in this section, is, of course, subject 
to many variations. These are primarily due to alternative definitions of complexity or 
additional requirements. It is interesting to compare this problem type with the one of 
deriving admissible behavior systems from a given data system, which is discussed in 
detail in Sections 3.4 and 3.6. The two problem types certainly have some similarities, 
which can be utilized in the GSPS implementation. That is, some of the procedures 
developed for one of them can easily be adapted to the other. When simplification of a 
given behavior system x by the exclusion of variables is permitted, set Yx becomes larger 
and some of the concepts introduced must be properly generalized, but the basic issues 
remain the same. 

Example 3.17. Consider a probabilistic behavior system whose behavior func
tion and mask are defined in Figures 3.22a and 3.22b. The image system is obvious. It is 
assumed that the support set and all state sets are totally ordered. Let us use the system 
to illustrate the problem of determining all its admissible simplifications without 
excluding any of its sampling variables. 

First, we have to determine the set Yx of all meaningful simplifications. Since there 
are two basic variables, each with a totally ordered set of three states, there are eight 
meaningful joint resolution forms. Each of these forms, which are specified in 
Figure 3.21, represents one meaningful simplification. When the simplifications are 
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Figure 3.22. Illustration of the simplification problem for behavior systems (Example 3.17). 

determined, each of them is characterized by values of complexity and generative 
uncertainty. These values are given in Figure 3.22c, which specifies the resulting 
combined complexity/uncertainty ordering; the same labels are used for the resolution 
forms as those in Figure 3.21b. Values for the original system, labeled by aa, are 
included for comparison. 

When inspecting the diagram in Figure 3.22c, we recognize three admissible 
simplifications of the given system, those based on resolution forms ac, be, cc. The last 
two are equal in both complexity and uncertainty and, consequently, the ordering is not 
anti symmetric in this example. It is interesting to observe that the simplifications for ab 
and ba increase the generative uncertainty, but they do not reduce the complexity of the 
given system at all. 
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Behavior functions of two of the three admissible simplifications, those for 
resolution forms ac and cc, are specified in Figures 3.22d and 3.22e. Although details of 
determining these functions and calculating the numbers in Figure 3.22 are not 
presented here, the reader is encouraged to do at least some of the calculations. 

3.10. SYSTEMS INQUIRY AND SYSTEMS DESIGN 

Most of the problems associated with system design and analysis can be 
characterized as involving the creation and manipulation of models of real and 
conceptual phenomena . ... The most difficult task is to create a framework, a 
context, within which any two solutions to the problem, no matter how different 
they may appear to be, may be compared, precisely, objectively, comprehensively. 

-A. WAYNE WYMORE 

Systems problems may arise in either of two principal contexts: systems inquiry or 
systems design. The aim of systems inquiry is to acquire knowledge regarding various 
sets of variables and supports defined for specific purposes on existing objects. The aim 
of systems design, on the other hand, is to utilize the acquired knowledge to construct 
new objects in which specified variables are constrained as required. Although systems 
problems of both systems inquiry and systems design exist at each level of the 
epistemological systems hierarchy, this section is restricted to a general discussion of 
problems that involve only source, data, and generative systems. Problems at higher 
levels are discussed in Chapter 4 and 5. 

First, let us discuss some issues involved in systems design. The most fundamental 
feature of systems design is that a required support-invariant constraint among some 
specific variables is defined by the user. This is in sharp contrast with systems inquiry, 
where the constraint is not known and the task is to characterize it adequately for some 
specific purpose. 

The constraint in systems design is defined either explicitly in terms of a specific 
generative system, usually a directed system, or it is defined implicitly in terms of a data 
system. In the former case, the design problem amounts to the determination of a set of 
structure systems that are admissible according to given requirements; this is discussed 
in Chapter 4. In the latter case, some generative systems that adequately capture the 
constraint embedded in the defined data must first be determined. This problem fits into 
the class of problems discussed in Sections 3.4 and 3.6 in the context of systems inquiry, 
but in the case of systems design the given data system contains (by definition) complete 
information about the manner in which the variables are constrained. 

In the context of systems design, the data function is often defined implicitly by 
describing its properties rather than explicitly, in the form ofa data matrix or array. For 
example, assume a simple directed system with one input variable whose state set 
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consists of 26 Roman characters and empty space, and one output variable with two 
states, 0 and 1. The input variable is determined by a sequence of characters and spaces 
of an English text that is scanned. The output variable is required to be in state 1 under 
certain conditions, say if the last word of the scanned text ends with lNG, and to assume 
state 0 otherwise. The problem is to convert this implicit definition of a data system into 
a generative system that for any English text would generate (in a deterministic manner) 
the required states of the output variable. Methods for dealing with problems of this 
kind have been well developed within the theory of finite state machines (or automata). 
A coherent collection of some of these methods should certainly be incorporated in the 
GSPS. Since abundant literature is available in this area (see Comment 3.8), there is no 
need to describe these methods in this book. 

To compare systems inquiry with systems design at the levels of data and 
generative systems, two classes of data systems occurring in systems inquiries have to be 
distinguished. In one class are those data systems whose variables have no meaning 
outside the support sets for which they are defined. Examples of such data systems are 

• a particular musical composition viewed as a data system (Example 2.6), where 
the variables obviously have no meaning beyond the time set covering the whole 
composition; 

• any data system with spatial support, in which the space set cannot be extended, 
such as a system with spatial acoustic data for a particular concert hall or a 
system defined on the globe, where the support set consists of latitude and 
longitude values that cover the whole globe; 

• any data system defined for an entire population of some sort, e.g., all 
compositions of a particular composer, all employees of a particular employer, 
and the like. 

Data systems of this kind thus contain complete information about the constraints of 
their variables. As such, they are methodologically similar to the data systems defined in 
systems design. Let all such data systems be called complete data systems. 

The second class of data systems in systems inquiries, which seem to occur 
considerably more frequently, are those systems whose variables are not restricted to the 
support set for which data are available. It is fair to state that virtually all systems whose 
support is time belong to this class (the example of a musical composition is a rare 
exception), and instances of complete data systems for other kinds of supports, while 
more frequent, are certainly not typical. 

There are two fundamental approaches to systems inquiry. In one of them, 
admissible generative systems (or higher-level systems) based on certain requirements 
are derived from a given data system, as discussed for the most typical requirements in 
Sections 3.4 and 3.6. This approach is usually referred to as a discovery approach. In the 
other approach, a hypothetical generative system (or a higher level system) is postulated 
and its validity is then tested by comparing data it generates for appropriate initial 
conditions with empirical data. If the system fails the validation test, based on some 
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specific validation (misfit) criteria, it is rejected and a new system is postulated. This 
approach to systems inquiry is usually called a postulational approach. 

When using the discovery approach, it is obvious that each generative system 
derived properly from a data system is a genuine representation, in a parsimonious 
fashion, of some aspects of the data system. Which aspects are represented by the 
generative system depends on its mask and the nature of its behavior or ST-function. If 
the generative system is deterministic, then it is a parsimonious description of the entire 
data system, a sort of "shorthand" description. 

If the data system is complete, the discovery approach amounts to finding patterns 
in its data. The discovered patterns can be then utilized for various purposes. If the data 
system is not complete, two issues regarding the discovered patterns (i.e., the derived 
admissible generative systems) must be distinguished: 

• data explanation within the range of given support set, and 
• data inference beyond the support set range, i.e., data prediction, retrodiction, or 

generalization. 

The difference between these two issues, which are often confused in the literature, is 
well characterized in one of Herbert Simon's articles [SI3]: 

Law discovery means only finding pattern in the data; whether the pattern will 
continue to hold for new data that are observed subsequently will be decided in the 
course of testing the law, not discovering it .... The discovery process runs from 
particular facts to general laws that are somehow induced from them; the process of 
testing discoveries runs from the laws to predictions of particular facts from 
them ... The fact that a process can extract pattern from finite data sets says 
nothing about the predictive power of patterns so extracted for new observations. 
As we move from patterns detection to prediction, we move from the theory of 
discovery processes to the theory of processes for testing laws. To explain why the 
patterns we extract from observations frequently lead to correct predictions (when 
they do) requires us to face again the problem of induction, and perhaps to make 
some hypothesis about the uniformity of nature. But that hypothesis is neither 
required for, nor relevant to, the theory of discovery processes. The latter theory 
does not assert that data are patterned. Rather, it shows how pattern is to be detected 
if it is there. This is not a descriptive or psychological matter, it is normative and 
logical. By separating the question of pattern detection from the question of 
prediction, we can construct a true normative theory of discovery-a logic of 
discovery. 

When the discovery approach is employed for data systems that are not complete, 
generative systems (or higher-level systems) are derived not only for the purpose of 
explaining the given data, but mainly for extending the data beyond the given support 
set, thus allowing prediction, retrodiction, or generalization. This requires, of course, 
that some sort of inductive reasoning be used. This means that the GSPS must be 
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equipped with a package of well-founded methodological tools for inductive reasoning. 
Relevant issues of inductive reasoning are discussed in Chapter 4. 

The problems of determining admissible generative systems are discussed in 
Sections 3.4 and 3.6 under the tacit assumption that sampling variables are defined 
solely in terms of the variables included in the given data system, i.e. observed variables. 
This is unnecessarily restrictive and may make it difficult in some cases to obtain 
reasonably simple generative systems with small or no generative uncertainty. The 
problems can be generalized by allowing the user to postulate hypothetical states of 
some additional variables, which are not among the observed variables. Such variables 
are usually called internal variables and their states are called internal states. 

Although the hypothetical internal states may be introduced for various reasons, 
they are usually introduced for the purpose of improving the trade-ofT between 
generative uncertainties and complexities of admissible generative systems. The 
introduction of internal states requires that some pattern in the given data be 
recognized through which they can be generated while, at the same time, they help to 
reduce the overall generative uncertainty. Such pattern recognition is feasible only for 
complete data systems and has been investigated within the theories of deterministic 
and probabilistic finite state machines. 

The concept of internal variables and states is important in systems design. The 
introduction of internal states in the process of systems design amounts to a convenient 
redefinition of the required constraint. After they are introduced at the abstract level, 
internal variables and their states can be exemplified in any way desired. In systems 
inquiry, on the other hand, the use of internal variables is problematic since they do not 
have any semantic content and it is not acceptable to exemplify them in an 
opportunistic fashion, as is done in systems design. 

In summary, systems design is always a process of climbing up the epistemological 
hierarchy of systems. It starts with the definition of either a generative system or a data 
system and a set of requirements regarding structure systems. The problem of deriving 
admissible generative systems from the defined data system belongs to the same class of 
problems as those discussed in Sections 3.4 and 3.6, but internal variables can also be 
employed when convenient. Systems inquiry can be performed by 

• climbing up the hierarchy by discovering higher-level systems whose lower
level systems have certain given properties and, if data are not complete, 
making appropriate inductive inferences (discovery approach); 

• postulating generative systems or higher-level systems and rejecting those 
which fail a misfit test between empirical and generated data (postulational 
approach); 

• any combination of the discovery and postulational approaches, e.g., 
climbing up to some level while postulating systems at a higher level. 

Problems associated with the discovery approach are given more attention in this 
book than are other classes of systems problems. This is motivated by two reasons. One 
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of them is of a pedagogic nature. The discovery approach, in which systems enter in 
increasing order of their conceptual complexity, is perfect for motivating, explaining, 
and formulating the whole GSPS conceptual framework. The second reason is that the 
discovery approach is not well covered in the literature, while both the postulational 
approach and systems design are covered quite well. 

NOTES 

3.1. The concepts of mask and sampling variables, which are central to generative systems, 
are due to Antonin Svoboda. He introduced them in the early 1960s for the purpose of designing 
and classifying switching circuits [SVI, SV2] and employed them later for developing a 
sophisticated and unorthodox methodology for dealing with switching circuits [SV 4]. 

3.2. Literature on probability theory is abundant. Kolmogorov's classic book, first 
published in 1933, seems still to be the best choice for a standard axiomatic treatment of 
probability theory [K03]. For a comprehensive survey and comparison of various axiomatic 
frameworks and interpretations of probability theory, a book by T.L. Fine is recommended 
[FI2]. 

3.3. Formula (3.32) was derived by R. Christensen [CH5] by using the principle of 
maximum entropy, which is one of the principles of inductive reasoning discussed in Chapter 4. 
He also derived a generalized formula for estimating probabilities, which accounts for any 
relevant background information available. Formula (3.34) was derived by D. Dubois and H. 

Prade [DU 3]. The study of all acceptable functions for converting frequency distributions into 
possibility distributions is a subject of current research. 

3.4. The concept of possibility measures, which is the basis for developing possibility theory, 
was suggested by Lotfi Zadeh in 1978 [ZA5]. Possibility measures form a small subset of the set of 
fuzzy measures, which were introduced by M. Sugeno in 1977 [SU 1]. They do not overlap with 
probability measures, which also form a class of fuzzy measures. It was shown by Puri and 
Ralescu [PU 1] that possibility measures can be defined only on finite sets and some special classes 
of infinite sets. The relationship among the various subsets of fuzzy measures, as summarized in 
Figure 3.5, is well described in Part II, Chapter 5, of a survey book by Dubois and Prade [DU 1]. 

~ 3.5. As mentioned in Section 3.5, the notion of conditional possibilities is a controversial 
issue in possibility theory. The controversy emerges from the relationship between the concepts of 
noninteraction and independence. It is clear that these two concepts are equivalent within 
probability theory. Let x E X and y E Y, where X and Yare some finite sets of events. Probabilistic 
non interaction is defined by p(x, y) = p(x)· p(y) for all x E X and all y E Y, where p(x, y) denotes 
the joint probabilities. Probabilistic independence is defined by p(x I y) = p(x) and p(y I x) = p(y), 

where p(x I y) denotes the conditional probability of x given y and p(y I x) denotes the other 
conditional probability. Since joint probability is defined as p(x, y) = p(x I y) . p(y) 

= p(ylx)'p(x), the sets X and Yare independent if and only if they do not interact. 
It is not obvious that noninteraction and independence are equivalent concepts when defined 

in terms of possibility theory. Two views on this issue are expressed in the literature by Hisdal 
[HI6] and Nguyen [NGI]. Given two finite sets of events X and Ywith possibility distributions 
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f (X) and f (y) (x E X, Y E Y), respectively, they are called noninteractive if and only if 

f(x, y) = min [f (x),! (y)] (3.108) 

for all x E X and y E Y, where f (x, y) denotes the joint possibilities of x and y. The sets are called 
independent if and only if 

f(xly) =f(x) (3.109) 

and 

f(ylx) =f(y) (3.110) 

for all x E X and yE Y, wheref(x I y)andf(y Ix)denote the conditional possibilities ofx given yand 
y given x, respectively. Hisdal argues that the equations 

f(x, y) = min U(y), f(xly)] 

f (x, y) = min [f (x),! (ylx)] 

(3.111) 

(3.112) 

must be satisfied for any two sets of events characterized by some possibility distributions f(x), 
f(y). Then, it is clear that (3.109) and (3.111) as well as (3.110) and (3.112) imply (3.108). Hence, the 
independence of possibilistic events implies their noninteraction. However, the converse is not 
true. Indeed, from (3.108) and (3.111) we obtain 

{
f(X) 

f(xly) = [f(x),1] 
if f(x) <f(y) 

if f(x) ~f(y) 
(3.113) 

(and similarly for the other conditional possibility). Hence, noninteraction does not imply 
independence. Nguyen takes a radically different approach to the meaning of the conditional 
possibilities. He defines "normalized" conditional possibilities in such a way that, by analogy with 
probability theory, possibilistic noninteraction is required to be equivalent to possibilistic 
independence. This requirement leads to the formula 

{
f(X' y) 

f(xly) = j'(x ) .f(x) 
,y f(y) 

where f (x)lf (y) is a normalization factor, .. 

iff(x):::;f(y) 

if f(x) > f(y) 
(3.114) 

3.6. The Shannon entropy, which is a natural measure of uncertainty and information for 
events characterized by probability distributions, has dominated the literature on information 
theory since it was proposed by Shannon in 1948 [SH3]. It was originally introduced for the 
purpose of analyzing and designing telecommunication systems, but its significance and 
applicability reaches far beyond this original purpose. The usefulness of the Shannon entropy in 
general systems methodology, perhaps one of its most significant roles, was recognized 
considerably later than many of its other applications. To the best of my knowledge, the only early 
proponent of this use of the Shannon entropy was the late Ross Ashby. Although his initial ideas 
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along these lines were presented as early as 1956 in his classic book [AS2], he returned to this 
subject more forcefully one decade later [AS5] and continued to be strongly interested in it for the 
rest of his life [AS8, AS10, ASl1]. 

The literature on information theory based on the Shannon entropy is plentiful. Among the 
many available books on information theory, a book by Aczel and Dar6czy [AC4] seems to be 
best survey of possible axiomatic characterizations of the Shannon entropy as well as its various 
generalizations, a book by Guiasu [GUl] is a good overview of applications of information 
theory, and a book by Watanabe [WA6] is an excellent conceptual and mathematical treatment of 
the role of information in scientific inference. 

3.7. It is generally recognized that the first measure of information and uncertainty was 
introduced by R. Hartley in 1928 [HA9]. He defined the information necessary to characterize an 
element of a finite set with n elements as the binary logarithm of n. The measure is frequently given 
one of two probabilistic interpretations. In the first, it is viewed as a special measure which 
distinguishes only between zero and nonzero probabilities and which, otherwise, is totally 
insensitive to the actual values of the probabilities. In the second interpretation, it is viewed as the 
Shannon entropy under the assumption that all elements of the set are equally probable. Such 
attempts to subsume the Hartley measure under the Shannon entropy are ill conceived since it is 
logically independent of probabilistic assumptions. In fact, it is incompatible with the Shannon 
entropy since it possesses a property of monotonicity (the larger the set, the larger its Hartley 
information), which is not applicable to probability distributions (they cannot be ordered in a 
comparable manner). 

It is shown in one of my papers, which I coauthored with Masahiko Higashi [H12], that the 
Hartley information is a special case ofpossibilistic information, expressed by the U-uncertainty 
given by Eqs. (3.56) or (3.57), for crisp possibility distributions (with possibilities 0 or 1 only). It is 
also proven in the paper that the U-uncertainty satisfies possibilistic counterparts of all the 
axioms required for the Shannon entropy (listed in Section 3.5) and, in addition, that it satisfies a 
general requirement of monotonicity (the larger the possibility distribution, the larger its U
uncertainty). The controversy associated with conditional possibilities, as mentioned in Note 3.5, 
is avoided by requiring that the additivity requirement be satisfied by the class of noninteractive 
sets of outcomes, which subsumes the class of independent sets of outcomes. The conditional 
U -uncertainty, given by Eq. (3.64), is also derived in the paper without any use of the controversial 
concept of conditional possibilities. 

3.8. Some methods emerging from the theory of finite state automata or machines 
(deterministic and probabilistic) were developed to deal with certain specific variations of the 
problem of deriving admissible generative systems from complete data systems. The methods are 
usually applicable only to directed systems and are based on the use of internal states. As such, 
although they are relevant to systems design, their utilization in systems inquiries is considenibly 
limited. Among the many books available in the area of automata theory, a book by Taylor Booth 
[B01] seems to offer the best coverage of both deterministic and probabilistic automata. A more 
methodologically oriented treatment can be found in one of my own books [KL5]. 

One particular contribution of automata theory deserves a special attention as an example of 
a perfect interface between the user and GSPS in dealing with a problem. It is a method, 
developed by Tal [TA2], by which a state-transition description of a deterministic finite-state 
machine (based on internal states) is constructed by asking the user, in an algorithmic fashion, 
simple questions of a yes/no type regarding the data system, e.g., whether a certain input/output 
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sequence is possible or not. When the questioning is completed (in a finite number of steps if the 
data is complete), the ST-system is determined algorithmically from the solicited answers. This 
method thus does not require the user to define his problem completely, but helps him to define it. 
Two additional papers supplement the original paper by Tal [GU4, TA3]; they include a proof of 
the correctness of algorithm and discuss some subtle issues associated with it. 

3.9. The possibility of using postulated internal states in systems inquiries was studied by 
Gerardy [GE3--4]. He demonstrates that the use of internal states in the process of deriving 
generative systems from empirical data is computationally intractable even for very small data. 
This result reinforces the conclusion, argued in Section 3.10, that the concept of internal states is 
of little significance for systems inquiries, while it plays an important role in problems of systems 
design. 

3.10. Among the many available methodologies for systems design, the one developed by 
Wayne Wymore [WY2] seems currently to be the best candidate for being integrated into the 
GSPS. It is sufficiently general, well formulated, and conceptually sufficiently close to the GSPS 
conceptual framework to make the integration manageable. 

3.11. The notions of explanation, prediction, and retrodiction are mentioned a number of 
times in this chapter. These are notions of great philosophical significance. Since it is beyond the 
scope of this book to cover them properly, I recommend two books as supplementary readings: a 
book by Satosi Watanabe [WA6], which deals with these notions in terms of information theory, 
and a book by Nicholas Rescher [RE2], which discusses fundamental philosophical issues 
associated with them (in terms of probabilistic ST-systems) and contains an extensive 
bibliography . 

• 3.12. For systems with continuous variables and supports, support-invariant constraints 
among variables are characterized, in general, by differential equations with constant coefficients. 
Derivatives, which are defined in terms of the basic variables and specific translation rules in the 
support set, are clearly sampling variables in this case. The highest-order derivative in a 
differential equation is an analog of the mask depth. Solutions of differential equations for 
various initial conditions have the meaning of generated data. Empirical data are any continuous 
functions of the support set. 

As an example, let function v(t) = sin t represent empirical data for some domain oft, where v 

is a variable and t is time. Then, v(t) = cos t and v(t) = - sin t. Hence, the differential equation 

v(t) + v(t) = 0 

is a time-invariant characterization of variable v since it is the same for every value of t. When 
the differential equation is solved for appropriate initial conditions, the original function is 
obtained .... 

3.13. Interesting discussions of the concept of environment are in the papers by G. C. 
Gallopin [GA5] and B. C. Patten [PA4]. 

3.14. A general formulation of the problem of determining admissible behavior systems, as 
exemplified by Eqs. (3.73) and (3.107) in two different contexts, was proposed by Brian Gaines 
[GA2]. 
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~ 3.15. The concept of entropy was originally proposed by Boltzmann in 1896 in the form 

b 

H(f(x)lxE[a,bJ) = - ff(X)IOgf(X)dX, 

a 

where f is a probability density function defined for a continuous variable x E [a, b]. Although 
similar by its form to the Shannon entropy, the Boltzmann entropy is not a counterpart of the 
Shannon entropy for continuous variables, as one might expect. In fact, the Boltzmann entropy is 
not a limit of the Shannon entropy and, consequently, it does not measure uncertainty and 
information. However, when modified to the form 

b 

H ( f(x) ) = ff(X) log f(x) 
B g(x)jxE[a,b] logg(x) , 

it becomes a counterpart of the Shannon cross entropy 

H ( f(x) ) = f(x) log f(x) , 
S g(X)jXEX x~x logg(x) 

where X is a finite set of states of variable x, and f, g are two probability distribution functions 
defined on X. For further details, some books on information theory should be consulted [GU1, 
KU1, RE12J. ~ 

EXERCISES 

3.1. Let the following periodical time sequences of states 0, 1 of a single variable v be given, 
where one period is underlined in each case: 

I = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 

Vr = 0 1 0 0 0 0 0 0 0 1 ... 

Vr = 0 0 0 0 0 0 0 0 1 ... 

Vr = 0 0 0 0 0 0 0 0 1 ... 

Vr = 0 0 0 0 0 0 0 0 1 ... 

For each of the sequences, find 
(a) deterministic systems by which the sequence can be generated from the left to the right 

and vice versa, respectively; 
(b) the ST-systems that are isomorphic to the behavior systems determined in (a). 

3.2. Consider the two-dimensional 8 x 8 "chessboard" spatial grid (Example 3.13) on which a 
single variable v with two states, black and white, is defined. Assume a behavior system in 
which four sampling variables, 

S = V l,x,y x,,, S - V 3,x,), - x+l,),' 

S -v 2,x,), - x,y+ 1, S4,x,y = Vx + l,y+ 1, 
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are involved, and whose generative behavior is defined as follows: S4 is black if S2 is white 

and SI = S3 or if S2 is black and SI + S3; otherwise, S4 is white. 
(a) Determine the mosaic pattern generated by the behavior system under the assumption 

that the top row and left column (initial conditions) consist of sequences W W B W W 
B W Wand W B B W W B B W, respectively, where W stands for "white" and B stands 
for "black." 

(b) Define the ST-system isomorphic to the behavior system. 
(c) Explore the effect of different initial conditions on the generated mosaic. 

3.3. Define appropriate generative systems on some man-made objects with which you are 
familiar. The following are hints of some possible objects: a combination lock, an elevator, 
a vending machine, an embroidery machine, internal combustion gasoline engine, decimal 
adder. 

3.4. Develop the following generative systems: 
(a) A deterministic behavior system describing a mortgage on a house. Assume a 20-year 

mortgage of $50,000 at the interest rate of 10% or, alternatively, consider your own 
mortgage. The system should generate amounts (in dollars and cents) of the individual 
monthly payments of the principal and interest. 

(b) A crisp possibilistic ST-system that characterizes (in a similar manner as the system 
described in Example 3.9) possible career paths of an employee of a large industrial 
company, say a computer firm. Let variables by which job categories are defined 
describe the levels of technical, managerial, customer interface, and selling aspects 
involved in each job category. Assume four states for each variable: none, low, medium, 
high. If you are not familiar with a particular company, use common sense to define a 
feasible system. 

(c) A behavior system that fully describes an iterative numerical algorithm of some kind, 
say the Newton-Raphson algorithm for calculating the square root of a positive 
rational number. Assume some specific precision required in the final result. 

(d) A crisp possibilistic ST -system that describes the constraints of a game such as chess or 
checkers. Do not attempt to specify the ST -function explicitly, but describe it by a set of 
propositions. For any given state, the propositions must be sufficient to determine all 
possible (legal) next states according to the rules of the game. 

3.5. As a continuation of Exercise 2.7, determine all admissible behavior systems for the data 
system resulting from that exercise and for some manageable largest acceptable mask. 
Perform this exercise for both probabilistic and possibilistic methodological distinctions. 

3.6. Consider a probabilistic ST-system based on one observed variable with three states 
(0, 1,2) whose ST-function is defined in Figure 3.23a for the mask M 1 and for the purpose 
of prediction. Derive from this system 
(a) ST-systems for masks M2 and M 3 ; 

(b) the isomorphic behavior system for the extended mask M :; 
(c) behavior systems for all meaningful submasks of M : ; 
(d) admissible behavior systems among those determined in (c), provided that the 

generative uncertainty and mask size are to be minimized; 
(e) isomorphic ST-systems for those of the behavior systems determined in (d) for which 

they exist. 
3.7. Assume that frequencies N(c) specified in Figure 3.23b were determined from empirical 

data for states c of four sampling variables based on two observed variables VI, V2, a totally 
ordered support set of 1,500 observations, and the mask M. Determine, for both the 
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000 001 002 012 111 221 222 

M 1 = L.1_L...-2 ........ _3 ..... 
.1 0 0.02 0 0 .01 0 
0 .03 0 0 .05 0 0 
0 0 .1 0 0 0 .03 

.03 0 0 .2 0 0 0 
0 0 .01 .01 .1 .03 0 
0 .05 0 0 0 .2 0 
0 0 0 .02 0 .01 0 

(a) Excerci5e 3.6 

Mj= I 2 3 4 

5, 5. 53 5. N(c) 

0 0 0 0 525 p= -2 -1 0 
0 0 150 

"~ 0 0 300 =M 
0 150 v2 3 4 

0 0 150 

0 150 
75 

(b) Excerci5e 3.7 

o 2 3 4 

{~ 1 .8 .5 0 0 
0 .2 .5 1 1 

{; 0 1 .4 .75 0 
1 0 .4 .25 0 
0 0 .2 0 1 

~----------~y~----------~ 

1 period 

(c) Exercise 3.8 

Figure 3.23. Illustrations for (a) Exercise 3.6; (b) Exercise 3.7; (.c) Exercise 3.8. 

probabilistic and possibilistic methodological distinctions, and for the purpose of 
prediction the following: 
(a) behavior systems for M ; 
(b) isomorphic ST-systems for the behavior systems determined in (a); check for each of 

them if it satisfies the transition balance expressed by Eqs. (3.80) and (3.81); 
(c) behavior systems for all meaningful submasks of M; identify those which are 

admissible (in the usual sense); 
(d) the directed behavior system for M under the assumptions that V2 is an input variable; 
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also calculate its generative uncertainty, under the assumption that the available 
information about V2 is utilized; 

(e) the same as in (d), but under the assumption that no information about V2 is available. 
3.8. Determine, for the purpose of prediction, possibilistic and probabilistic behavior functions 

based on mask M = {(VI> -1), (VI, 0), (V2' O)} for the periodic fuzzy data array (with 
totally ordered support set) specified in Figure 3.23c. 
(a) Use both the product and min aggregation functions. 
(b) Propose and use in this exercise some other aggregation functions, which satisfy the 

specified requirements for acceptable aggregation functions. 
3.9. Repeat Example 3.7 for AM = 2 and the possibilistic methodological distinction. 

3.10. Consider a neutral data system with two variables, totally ordered support set, and data 
specified by the matrix 

d=[ o 0 

o 0 

1202121102222 

221 202 2 000 2 2 

o 
2 

2 1 2 2 2 0 2 2 0 

00120 1 002 

222 

222 

o 2 001 0 021 1 0 2 2 2 2 o 
2 

2 1 2 2 2 0 

00120 1 021 2 2 2 0 2 2 0 0 0 2 2 

201 002 0 2 0 

20221 0 

220 1 

1 000 

o 0 0 001 2 2 200 2 o 200 

202 1 2 1 

2 2 200 2 

1 0 

o 2 

002 1 102 2 

o 0 0 0 2 102 2 2 2 o 1 2 1 2 2 2 0 2 2 000 2 

o 1 2 0 

o 1 2 0 

2 0 

2 0 

2 0 1 2 2 0 2 2 0 0 0 2 2 1 1 2 1 0 0 1 2J 

2 0 1 2 0 1 0 0 2 0 2 0 1 2 2 0 1 1 1 1 2.. 

Assume that the state sets of the variables are totally ordered (i.e., 0 < 1 < 2). Derive from 
the data system 
(a) a probabilistic or possibilistic behavior system for a two-column mask, which is to be 

used either for prediction or retrodiction; 
(b) all meaningful simplifications of the behavior system determined in (a) and based only 

on resolution form coarsening; 
(c) for each simplification obtained in (b), determine all admissible behavior systems for all 

meaningful submasks of the two-column mask and the usual requirements. 
3.11. Repeat Exercise 3.10 under the assumption that the data system is directed. Assume that 

the first variable is viewed as an input variable and that available information about this 
variable is not relevant (e.g., it is controlled by the user). 

3.12. Suppose that for the purpose of testing a population of manufactured electronic chips of 
the same kind, you define a variable by which you characterize which of two types of defect 
occurred. The variable has four states: 

0: neither of the two types of defect occurred 
1: the first type of defect occurred, but not the second 
2: the second type of defect occurred, but not the first 
3: both occurred 
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This set of states is partially ordered since states 1 and 2 are not comparable. 
(a) Determine all partitions of the state set that preserve the partial ordering. 
(b) Describe (preferably in the form of a Hasse diagram) the resulting resolution lattice for 

this variable. 
3.13. Let another variable be added to the one described in Exercise 3.12. It is introduced to 

characterize the total number of observed defects on each chip. Suppose the variable has 
ten states: 

0: no defect 
1: one defect 

9: nine defects. 
This state set can clearly be viewed as totally ordered. 
(a) Determine the total number of elements in the joint resolution lattice and the number 

of meaningful resolution forms in the lattice. 
(b) Give examples of at least three complete paths in the lattice, from the most refined to 

the least refined resolution form. 
(c) Calculate the total number of meaningful simplifications that exist for generative or 

data systems based on the two variables. 
3.14. Let the following three variables and state sets be defined for each member of a population: 

• educational background (variable E): 
o-less than high school, 
I-high school, 
2-college degree, 
3-graduate degree; 

• political affiliation (variable P): 
d--democrat, 
r-republican, 
i-independen t; 

• sex (variable S): 
f-female, 
m-male. 

(a) Determine the lattice of variables (V-lattice) for this example. 
(b) Decide which mathematical properties (if any) should be recognized in each of the state 

sets. 
(c) Determine the resolution lattice and its subset of meaningful resolution forms for each 

of the state sets. This result depends, of course, on the decisions made in (b). 
(d) Calculate the total number of meaningful simplifications that exist for any generative 

or data system based on the three variables. 
3.15. Repeat Exercise 3.14 for the systems defined in Tables 3.1 and 3.2. 
3.16. Assume that a generative system consists of three observed variables. One of them has six 

states that are partially ordered. Let the ordering be defined by the following list of 
immediate refinements: 0 ~ 1, 0 ~ 2, 1 ~ 3, 1 ~ 4, 2 ~ 5, 3 ~ 5, 4 ~ 5. State sets of the 
other two variables are totally ordered; they have five states and seven states, respectively. 
Determine 
(a) the total number of meaningful simplifications based only on resolution form 

coarsening; 
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(b) the total number of all m~ningful simplifications, including those obtained by 
excluding some variables. 

3.17. Derive formula (3.36) for the number of meaningful submasks of a largest acceptable mask. 
3.18. Given a largest acceptable mask M with n rows and aM columns, derive a formula for 

(a) the number of meaningful submasks of M whose generated part is represented by the 
rightmost column of M; 

(b) the number of meaningful submasks of M which contain n + k elements, where 
O:=::;: k :=::;: (aM -l)n; 

(c) the number of meaningful compact submasks of M; 
(d) the number of all meaningful submasks ofM such that an isomorphic ST -system exists 

for a behavior system defined for anyone of them. 
3.19. Prove inequalities (3.38) for the Shannon entropy and inequalities (3.58) for the 

possibilistic uncertainty. 
3.20. Derive formulas (3.102H3.104). 
3.21. Calculate the numbers given in Figure 3.22 for Example 3.17. 
3.22. Prove the following proposition: if fB(c) is calculated by formula (3.32), then 

where N(g, g) = N(c). 
3.23. Consider a generative system based on one basic variable v which is of ordinal scale and has 

three states labelled by integers 0,1,2. Assume further that the state set {O, 1, 2} is linearly 
ordered in the same way as the integers. The support is time (linearly ordered). The system 
is characterized by the probabilistic behavior function in Table 3.7a, where the sampling 
variables Sl, S2 have the following meaning: 

TABLE 3.7 
Illustration for Exercises 3.24-3.27. 

(a) (b) 

SI S2 fB(e) SI S2 S3 fB(e) 

e=O 0 0.05 e=O 0 1 0.20 
0 1 0.20 0 0 0.15 
0 2 0.15 0 1 1 0.10 

0 0.10 0 0 0.20 
1 0.05 0 1 0.05 

1 2 0.10 0 0.10 
2 0 0.25 0.20 
2 2 0.10 
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Determine all meaningful simplifications based on coarsening the resolution from that are 
based upon the assumption that you use the behavior for the purpose of prediction. Then, 
determine which of them are members of the solution set. 

3.24. A generative system, based on one basic variable v and linearly ordered support t, is 
characterized by the probabilistic behavior function in Table 3.7b, where the sampling 
variables Sl, S2, S3 have the following meaning: 

S2.t = Vt + 1 

Determine: 
(a) the retrodictive generative uncertainty of the system; 
(b) a matrix representation of the retrodictive basic ST -form corresponding to the given 

behavior; 
(c) a matrix representation of the generative version of the ST-form obtained in (b); 
(d) a diagram representation of the generative ST-form obtained in (c). 

3.25. Repeat Exercise 2.24 for the purpose of prediction. 
3.26. Evaluate the generative system given in Exercise 3.24 for all meaningful submasks under 

the assumption that it is used for the purpose of prediction and determine the solution set 
based on two preference orderings: complexity, expressed by the size of the mask, and 
generative uncertainty. Plot the dependence of the generative uncertainty on the size of the 
mask. 

3.27. Repeat Exercise 3.26 for the purpose of retrodiction. 
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STRUCTURE SYSTEMS 

The world does not present itself to us mostly divided into systems, subsystems, 
environments, and so on. These are divisions which we make ourselves,for various 
purposes, often subsumed under the general purpose evoked by saying ''for 
convenience." 

-JOSEPH A. GOOUEN AND FRANCISCO J. VARELA 
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4.1. WHOLES AND PARTS 

Once the whole is divided, the parts need names. There are already enough names. 
One must know when to stop. Knowing when to stop averts trouble. 

-LAOTsu 

The determination of a generative system (or a set of admissible generative systems), as 
discussed in Chapter 3, is only the first theoretical stage in systems inquiries. New 
challenges arise when higher epistemological types of systems become involved. This 
chapter is devoted to problems that arise in connection with structure systems. 

A structure system, loosely speaking, is a set of source, data, or generative systems 
that are based on the same support set. The systems that form a structure system are 
usually referred to as its elements. They may share some variables. The shared variables, 
which are usually called coupling variables, represent interactions among the elements. 

Three epistemological types of structure systems are distinguished, depending on 
whether the elements are source, data, or generative systems. It is natural to refer to 
these three systems types as structure source systems, structure data systems, and 
structure generative systems, respectively. More specific types of structure systems, such 
as structure image systems, structure behavior systems, or structure ST-systems, may also 
be recognized for some purposes. 

Given a structure system of one of these types, there is one system associated with it 
that is defined in terms of all variables included in its elements. Such a system, which is 
assumed to be of the same type as the elements of the structure system, is viewed as an 
overall system, i.e., a system which represents, as a whole, all the variables involved. 
According to this view, elements of any structure system are interpreted as subsystems of 
the associated overall system and, similarly, the overall system is interpreted as a 
supersystem of the elements. Then structure systems become basically representations 
of overall systems in terms of their various subsystems. 

The status of a system as either an overall system or a subsystem is, of course, not 
absolute. A behavior system, for example, may be viewed in one context as an element of 
a structure system (and, consequently, a subsystem of an overall behavior system), while 
in another context it may be viewed as an overall system whose subsystems form a 
structure system. Each source, data or generative system thus plays a dual role. It 
assumes the status of a subsystem in one context and the status of a supersystem in 
another context. We may thus say not only that "a part is a whole in a role" (as suggested 

177 
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by Ranulph Glanville), but also that a whole is a part in a role. This duality makes it 
possible to represent each overall system by a hierarchy of structure systems, i.e., by a 
structure system whose elements are also represented by structure systems, whose 
elements are also ... , etc., up to elements consisting of single variables. The nature of 
this hierarchy is concisely captured by Goguen and Varela[G01]: 

At a given level of the hierarchy, a particular system can be seen as an outside to 
systems below it, and as an inside to systems above it; thus, the status (i.e., the mark 
of distinction) of a given system changes as one passes through its level, in either the 
upward or the downward direction. The choice of considering the level above or 
below corresponds to a choice of treating the given system as autonomous or 
controlled (constrained). 

Why is it desirable to represent overall systems by collections of their subsystems? 
There are several reasons. One of them is concerned with observation or measurement. 
When the support involves time, it is often technically impossible or, at least, impractical 
to observe (measure) simultaneously all variables that are considered relevant to some 
purpose of investigation. There is no choice in such cases but to compromise and collect 
data piecemeal, for the largest possible subsets of the variables. In other cases, the 
investigator must rely on second-hand data, often gathered for different purposes by 
various agencies or individual researchers, each covering only a subset of the variables of 
concern to him. 

Another reason why structure systems are desirable is connected with complexity 
and that, in turn, is connected with manageability of the system under consideration. 
One aspect of systems manageability is expressed in terms of the size of computer 
memory required to store the system. Consider, for example, n variables, each of which 
has k states. When dealing with the overall system of these variables, nlc" memory cells, 
each of which can store anyone of k states, must be made available for storing states of 
the system. On the other hand, when a structure system consisting of all subsystems with 
two variables is used, the number of memory cells that are needed for the same purpose 
is k2n(n - 1). This number grows with increasing values of k and n at a considerably 
lower rate than that ofnlc", as illustrated in Figure 4.1 for k = 10. If the structure system 
contained only some of the two-variable subsystems, the comparison would be even 
more favorable. Although for some small values of nand k, structure systems may 
require more memory space than the corresponding overall systems, it is clear that their 
memory requirements are far less demanding in most cases of practical significance, 
especially for large values of k and n. 

Another aspect of systems manageability is connected with the number of possible 
systems that must be considered in some problems. To make a comparison between the 
number of overall systems and the number of structure systems of some kind, let us 
again consider n variables, each with k states. In addition, let us distinguish for each state 
of the system considered only whether or not it is possible. Then, there are 

21l' 
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3 4 5 6 7 8 9 10 
NUMBER OF VARIABLES: n 

possible structure systems consisting of all binary (two-variable) subsystems, and 

possible structure systems with only n binary subsystems. Although all these numbers 
are too large to allow an exhaustive search even for small values of nand k, the number 
of structure systems (in either of the two alternatives) grows at a considerably lower rate 
than the number of possible overall systems. For example, when n = 10 and k = 2, the 
number of structure systems with all binary subsystems is 720 while the number of all 
possible overall systems is 10308 (i.e., beyond the Bremermann limit discussed in Section 
6.4). Hence, it is generally easier to search through the set of all structure systems of 
some kind rather than through the set of all possible overall systems, even though some 
restrictions are often unavoidable in either case. 

There are numerous reasons why structure systems are desirable in engineering. 
Some of them are related to the manageability of the design process. These are basically 
variants of the reasons just discussed. Other reasons are associated with the availability 
of a limited inventory of prefabricated elements (modules) suitable for the given 
purpose, implementation efficiency, as well as various issues connected with reliability, 
testability, and maintainability of the system under design. 
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Practical reasons related to problems of manageability, efficiency, maintainability, 
and the like are not the only reasons why structure systems are desirable. In systems 
inquiries, structure systems have a more fundamental role. When properly justified, a 
structure system provides the investigators with some knowledge that is not available, 
at least explicitly, in the corresponding overall system. This additional knowledge may 
help him to answer certain questions associated with the investigation or, more 
generally, may help him to develop better insight into the problem. 

Structure systems are at the center of one of the most controversial issues in 
philosophy-the issue of the relationship between wholes and parts. This issue can be 
traced not only to ancient Greek philosophy, but also to the much older Chinese 
philosophy of the I Ching and its various successors. It is well characterized in a paper 
by Archie Bahm[BAl]: 

No problem is more central to understanding the nature of existence, or knowledge, 
or values, or logic, than the problem of the nature and relations of a whole and its 
parts, and of wholeness and partiality. 

On the one hand, it is clear immediately that what we mean by "a part" is that it 
is "a part of a whole," and that what we mean by "a whole" is that it is "a whole of 
parts." Given these meanings, there are no parts which are not parts of a whole and 
no wholes which are not wholes of parts. Wholes and parts involve each other; each 
depends upon the other for being what it is, even though each is not the other. A part 
of a whole is not that whole, and a whole of parts is not one of its parts. 

However, difficulties in conceiving just how a whole and its parts are related to 
each other have given rise to theories which seem to deny, or at least modify, what is 
initially obvious. Some of these difficulties arise because there are different kinds of 
wholes and whole-part relations. 

Goguen and Varela suggest four alternative criteria for the degree of wholeness of a 
system [GO 1 ]: 

It is interesting to consider whether one can have a measure for the degree of 
wholeness of a system. One can, of course, always draw a distinction, make a mark, 
and get a "system" but the result does not always seem to be equally a "whole 
system", a "natural entity", or a "coherent object" or "concept". What is it that 
makes some systems more coherent, more natural, more whole, than others? 
... One point of view toward wholeness is that it co-occurs with interesting 
emergent properties . ... Another point of view toward wholeness is that it can be 
measured by the difficulty of reduction ... A third point of view is that a system is 
whole to the extent that its parts are highly interconnected, that is, to the degree that 
it is difficult to find relatively independent subsystems .... A fourth point of view is 
that a system seems more whole if it is more complex, that is, more difficult to reduce 
to descriptions as interconnections of lower level components. 

The wholes-parts controversy in philosophy has been echoed by a controversy 
between two opposing methodological views in science-reductionism and holism 
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(from Greek "holos" which means the adjective "whole"). Reductionism is based on the 
thesis that properties of a whole are explicable in terms of properties of constituent 
elements. Holism, on the other hand, rejects this thesis and claims that a whole cannot 
be analyzed without residue in terms of its parts. This claim is often expressed by the 
familiar statement "the whole is more than the sum of its parts," whose true author is 
likely to remain unknown. 

Within the GSPS framework, the dichotomy of wholes and parts is manifested by 
the dual role of source, data, or generative systems as either supersystems or 
subsystems. The various issues regarding the relationship between wholes and parts, 
often surrounded by mysticism, can be clearly formulated as systems problems and 
studied accordingly. The two methodological doctrines-reductionism and holism
then emerge as complementary in a sense that is well described by Goguen and Varela 
[GO I]: 

Most discussions place holism/reductionism in polar opposition. This seems to stem 
from the historical split between empirical sciences, viewed as mainly reductionist or 
analytic, and the (European) schools of philosophy and social science that grope 
toward a dynamics of totalities. 

Both attitudes are possible for a given descriptive level, and in fact they are 
complementary. On the one hand, one can move down a level and study the 
properties of the components, disregarding their mutual interconnection as a 
system. On the other hand, one can disregard the detailed structure of the 
components, treating their behavior only as contributing to that of a larger unit. It 
seems that both these directions of analysis always coexist, either implicitly or 
explicitly, because these descriptive levels are mutually interdependent for the 
observer. We cannot conceive of components if there is no system from which they 
are abstracted; and there cannot be a whole unless there are constitutive 
elements ... 

These descriptive levels haven't been generally realized as complementary 
largely because there is a difference between publicly announced methodology and 
actual practice, in most fields of research in modern science. A reductionist attitude 
is strongly promoted, yet the analysis of a system cannot begin without acknowledg
ing a degree of coherence in the system to be investigated; the analyst has to have an 
intuition that he is actually dealing with a coherent phenomenon. Although science 
has publicly taken a reductionist attitude, in practice both approaches have always 
been active. It is not that one has to have a holistic view as opposed to a reductionist 
view, or vice versa, but rather that the two views of systems are complementary .... 
Reductionism implies attention to a lower level, while holism implies attention to a 
higher level. These are intertwined in any satisfactory description; and each entails 
some loss relative to our cognitive preferences, as well as some gain. 

The same argument, that we need to be able to deal with both the parts and wholes 
of systems as our motivations dictate, is more concisely and poetically expressed by 
P. Suppes [SU4]: 
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I am for the delicate dance from parts to wholes and back again. We should not be 
captured at either end. The dance should go forever. 

Structure systems are associated with some of the most fundamental types of 
systems problems. These problem types are basically operational formulations, in the 
GSPS language, of the various issues regarding the relationship between wholes and 
parts. Some of them are connected with systems inquiry, others are involved in systems 
design; some of them are of a practical nature, others have theoretical significance or 
touch upon certain philosophical questions. The aim of this chapter is to define 
structure systems of various types and to discuss some of the key problems associated 
with them. 

4.2. SYSTEMS, SUBSYSTEMS, SUPERSYSTEMS 

The meaning of a whole and a part will concurrently exist in our mind only when we 

think about the relationship between them instead of about the things themselves. 
-AMOS IH TIAO CHANG 

Systems of various types are introduced for three epistemological levels in 
Chapters 2 and 3. Given two systems of anyone of these types, it is often desirable to 
determine whether they are related as whole and part. To make this possible, however, 
one must commit to some specific meaning of the whole-part relationship within the 
GSPS framework. Its choice is not arbitrary. It should reflect, in a satisfactory manner, 
our common-sense comprehension of such a relationship. This means, in turn, that the 
GSPS formulation of the whole-part relationship should be subject to some 
requirements through which its common sense meaning is adequately captured in terms 
of the GSPS language. 

One of the obvious characteristics of the whole-part relationship is that the wholes 
and parts under consideration are compatible, i.e., they are things of the same sort. This 
leads to the requirement that systems involved in a whole-part relationship also be 
compatible in the same sense. To be compatible, systems must clearly be of the same 
type. In addition, our common sense requires that they be defined in terms of the same 
overall support set. 

Systems compatibility is a necessary condition for the whole-part relationship 
among systems, but it is not a sufficient condition. Given two compatible systems, say x 
and y, our common sense would obviously accept x as a part of y only if x were totally 
included in y in some appropriate manner depending on the nature of the systems. 

The requirements of compatibility and inclusion seem to capture the essence of the 
whole-part relationship of systems adequately. To keep the meaning of the relationship 
as general as possible, no additional requirements are desirable. It remains, of course, to 
define the whole-part relationship for source, data, and generative systems so that both 
of these requirements are satisfied. 
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First, let us introduce some convenient terminology and notation. Assume that 
system x is recognized as a part of system y. Then, let x be called a subsystem of y, or, 
alternatively, let y be called a supersystem ofx. For formal purposes, let x -< y denote 
that x is a subsystem of y (and y is a supersystem of x). 

Assume now that systems xs and'S are source systems. To qualify for the 
subsystem relationship (and its inverse-the supersystem relationship), they must be 
compatible. For source systems, it means that they must be of the same methodological 
type (i.e., based on the same methodological distinctions) and must be defined in terms 
of the same supports as well as the associated backdrops. 

The inclusion requirement is expressed for source systems by several subset 
relationships: xS is viewed as a source subsystem of'S (assuming xs, 's are compatible 
source systems) if and only if the set of variables (general as well as specific) and 
attributes of system xs are subsets of the corresponding sets of system'S and, 
accordingly, the families of state sets and appearance sets as well as the sets of 
observation and exemplification channels of system xs are subsets of the corresponding 
families and sets of system'S. This collection of subset relationships, all of which must 
be satisfied to achieve a subsystem relationship, can be conveniently expressed in terms 
of a single index set. Its elements identify individual entities (variables, attributes, 
channels) in the various sets, and it is assumed that general variables, specific variables, 
and attributes corresponding to each other are labeled by the same element of the index 
set (as assumed in the formal definition of source systems in Chapter 2). Formally, let 
the variables, attributes, etc., of systems xs, 'S be labeled (identified) by elements of index 
sets x J, 'J, respectively. Then, the subsystem relationship between xs and'S is 
completely described by the subset relationship 

between their index sets; it is normally assumed that 

Example 4.1. Let lS be the source system defined in Example 2.3 (a stand of 
hardwood timber). Then, 1 J = N7 . Let 2S denote a source system that is defined as a 
subsystem of 1 S eS -< 1 S) by the index set 2 J = {I, 2, 3, 7}. Then, 2S consists of all the 
entities that are included in lS except Vi' V:, Vi' V;, ai' Ai' 0i' ei for i = 4, 5, 6. 

~ When dealing with directed source systems, the subsystem relationship is also 
reflected in the respective input/output identifiers. Let xs, 's be directed source systems 
such that xs -< 's, and let 

Xu = euU)ljexJ), 

'u = (Yu(j)lje'J) 
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be their input/output identifiers. Then, 

Xu(j) = 'u(j ) 

for all j E x J. To keep track of values j associated with the individual components in the 
identifiers Xu and 'u, it is convenient to assume for any input/output identifier u that 
elements u(j ) are ordered in increasing order of values j ..... 

The subsystem relationship defined for source systems can be easily extended to 
data systems. Clearly, given two compatible data systems xD, 'D whose source systems 
are xS, 'S, respectively, xD is said to be a data subsystem of'D, i.e., 

if and only if 

i. xS -< 'S, and 
ii. xD contains only data that are contained in 'D and pertain to variables included 

in xS. 

It is important that the data arrays involved be properly labeled to make the association 
of their entries with the individual variables unique. 

Example 4.2. Let 

denote, respectively, the data system defined in Example 2.6 (a blues tune) and a 
subsystem of 1 D whose source system is defined by the index set { 1, 2} (i.e., we consider 
only pitch and rhythm, but not harmony). Then, 2S contains all the entities that are 
included in IS except v3 , V3 ,V3 , V3, a3 , A 3, 0 3 , e3, and the data 2d consist of the matrix in 
Figure 2.8 without the third row. 

~ It remains to define the subsystem relationship for the two versions of generative 
systems-behavior systems and ST -systems. Let 

XF B = (XS, xM, 'fB)' 

'F B = ('S, 'M, 'fB) 

be two compatible behavior systems and let "J, 'J denote the sets of identifiers of 
variables included in their source systems xs, 's, respectively. Then, XF B is said to be a 
behavior subsystem of 'F B, i.e., 
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if and only if the following three conditions are satisfied: 

i. XJ ~ YJ so that XS -< YS; 

ii. XM ~ YM such that (Vi' rj )EXM iff (Vi' rj )EYM and iEXJ; 
iii. "fB = [1B! XK], where XK denotes the set of identifiers of the sampling 

variables associated with the mask xM, i.e., "fB is a projection* of1B with respect 
to sampling variables of system XF B' 

To define 

as a S T-subsystem of a compatible ST -system 

YF = (YS YM YI') 
oS " Js , 

conditions (i), (ii) remain the same, while condition (iii) must be replaced by the 
following, slightly modified condition: 

a denotes, as in Section 3.6, some aggregation function that is determined by the nature 
of the function "f. (e.g., sum for probabilistic systems and the min function for 
possibilistic systems) ..... 

Example 4.3. The behavior subsystem/supersystem relationship is illustrated by 
two behavior systems, IF Band 2 F B, defined in Figure 4.2. Both systems are based on the 
same support set that is totally ordered. Their image systems I I, 21 contain two-state 
variables, VI' V2, V3 , V4 and VI' V4 , respectively. They may be associated with some 
interpretation (exemplification and observation channels), but it is of no significance for 
the purpose of this example. Behavior functions of the systems represent probabilistic 
distributions. We can see that system 2F B satisfies the three conditions of a behavior 
subsystem with respect to system IF B and, consequently, IF B >- 2F B' Since the systems 
are probabilistic, the aggregation function involved in the projection [ YB 1 { 1, 2, 6} ] is 
the sum function. For example, 2IB(000) is obtained by adding the first three 
probabilities in the table for lIB. 

The notions of behavior subsystems and ST -subsystems can be easily modified to 
the other types of generative systems (generative behavior systems, directed behavior 
systems, etc.). It is solely a matter of convenient identification of the generating, 
generated, and input variables in both of the systems under consideration. 

* The operation of projection is defined and explained in Section 3.6. 
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Supersystem of 'Fs 

'Fs -< 'Fs 

'fs (2c) 

0.30 
0.05 
0.35 
0.30 

Figure 4.2. Example of the behavior subsystem/supersystem relationship (Example 4.3). 

4.3. STRUCTURE SOURCE SYSTEMS AND STRUCTURE DATA SYSTEMS 

Coming back to the general problem of a whole and its parts, we should realize that 
complication, hence also richness, of arguments concerning this problem stems at 
least partly from thefact that the same system can be divided into parts in many 

different ways. 

-SATOSI WATANABE 

As previously mentioned, structure systems are basically sets of source, data, or 
generative systems. Their purpose is to integrate several systems into larger systems. In 
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order to achieve a meaningful integration, the individual systems-or elements of the 
structure system-must be compatible in the sense that they are of the same type and 
are defined in terms of the same support set. This is basically the same condition of 
compatibility as the one required for the subsystem relationship (Section 4.2). 

In addition to the compatibility condition, it is also desirable to require that no 
element be a subsystem of another element in the same structure system. The purpose of 
this requirement is to avoid mixing of refinement levels in individual structure systems 
so that they can be hierarchically ordered, as hinted in Section 4.1. Furthermore, 
subsystems of any elements in a structure system are totally redundant in the sense that 
any information they contain is also contained in and derivable from the elements that 
are their supersystems. As such, they have no useful role in structure systems. Let this 
requirement be called an irredundancy requirement. 

Redundant elements are often used in engineering systems to achieve various error 
detection or error correction capabilities. As explained in Section 4.4 (Example 4.8), the 
irredundancy requirement does not by any means exclude structure systems of that sort. 

In order to define the various structure systems formally, let us assume that a 
neutral structure system consists of q elements (neutral systems of some type) that 
satisfy the compatibility and irredundancy requirements. Let the elements be identified 
by index x, where x E Nq • In addition, let 

(4.1) 

denote the set of all variables included in the elements, and let xV denote the set of 
variables in a particular element x (x E Nq ). Then, 

(4.2) 

For notational convenience, let variables in sets xV be identified by the same index i as 
the variables in the full set V, defined by (4.1). Then, each element can be uniquely 
identified by its sets of variables xv. 

Let each of the various types of structure systems be denoted by the standard 
symbol representing the type of its elements prefixed by an S. For instance, SS, SD, SF B, 

SF GS would denote structure systems whose elements are neutral source systems, 
directed data systems, neutral behavior systems, and directed generative ST -systems, 
respectively. The prefix S is thus used as an operator which indicates that several systems 
of the specified type are integrated into a larger system. 

The simplest type of structure systems has neutral source systems as elements. It is 
defined as the set 

(4.3) 

where xS denotes for each x E Nq a neutral source system (an element of SS); xV denotes 
the set of variables included in xS and is used as a convenient identifier of elements in the 
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structure system. The source systems xS in (4.3) are required, of course, to satisfy the 
compatibility and irredundancy requirements, but no additional conditions are 
imposed. 

If two elements in SS, say elements identified by x, y E Nq, share some variables, i.e., 

x V n Y Vof 0, (4.4) 

we say that the elements are coupled. Let this set of shared variables be called a coupling 

between elements x and y, and let the variables in this set be called coupling variables. 
Couplings are significant traits of structure systems since they represent interactions 
between their elements. For neutral structure systems, couplings are clearly symmetric, 
i.e., independent of the order in which the elements are considered. For convenience, let 
the coupling between neutral elements x and y of a structure system be denoted by the 
symbol Cx •y , i.e., 

C X,Y = x V n Y V. (4.5) 

Example 4.4. Consider a structure source system defined on a potted rosebush 
from the standpoint of the rosebush grower. The system is defined for the purpose of 
discovering ways of increasing the total yearly yield of the grower. 

All variables involved in this system are based on two supports: a population of 
individual potted rosebushes that are under investigation, and time. Several populations 
are actually investigated in parallel, each characterized by some specific properties such 
as particular kinds of soil, fertilizer and pest control, picking frequency, etc. 
Observations are required to be made for all individuals in the population every second 
day for a period of one year; if desirable, the investigation will be extended to several 
more years. 

Six parts are recognized on the whole object of investigation-an individual potted 
rosebush-as illustrated in Figure 4.3: soil, roots, stems, sap, leaves, blossoms. A source 
system is defined on each of these parts in terms of specific subsets of the following set of 
19 variables (details of the observation and exemplification channels are omitted for the 
sake of simplicity): 

VI (soil moisture)-low, medium, high; 
v2 (roots' water absorbing ability)-low, medium, high; 
V3 (roots' mineral absorbing ability)-low, medium, high; 
V4 (stem sap carrying ability)-poor, good; 
V5 (stem blossom bud density)-low, medium, high; 
V6 (stem leaf bud density)-low, medium, high; 
V 7 (sap color substances)-low, medium, high; 
Vg (sap odor substances}--low, medium, high; 
V9 (sap growth substances)-low, medium, high; 
V IO (number of leaves}--sparse, normal, excessive; 
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Figure 4.3. Parts of the rosebush on 
which elements of a structure system are 
defined (Example 4.4). 

Vll (leaf color~poor, good; 
V 12 (leaves sick~stunted, normal; 
V I3 (blossom color~pale, normal, intense; 
VI4 (blossom odor~weak, normal, intense; 
VIS (blossom size~small, normal, gigantic; 
V lb (number of blossoms~sparse, abundant, profuse; 
V17 (air temperature in °F~below 60, 60-69, 70-79, 80-89, 90 or more; 
VIS (rainfall~below average, average, above average; 
V I9 (average sunlight in hours per day~less than 3, 3-6, more than 6. 

189 

The six elements of the structure system are defined by the following subsets of this full 
set of variables; 

x = 1 (soil~vI' v 17 , VIS; 

x = 2 (rootS~VI' V2, V3 ; 

x = 3 (stems~v2' V3, V4, Vs, Vb' V 17 ' V19 ; 

x = 4 (sap~v2' V3, V4, V7, Vs, V9, V17 , V19 ; 

x = 5 (leaves~v6' VIO , Vll , V 12 ' V17, VIS' V19 ; 

x = 6 (blossoms~v5' V13, V14' VIS ' V16' V17, VIS' V19 . 
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Couplings between individual elements are easily obtained by taking the appropriate 
intersections of these sets. For example, 

Let a structure system SS, whose elements are directed source systems, be defined 
as the set 

(4.6) 

where xX, xy denote the sets of input and output variables of element x, respectively. 
Clearly, 

xX uxy= xv. (4.7) 

Except for distinguishing input and output variables, set (4.6) is quite similar to that 
defined by (4.3) for neutral structure systems SS. However, elements xS of any directed 
structure system SS are subject to one additional requirement regarding their 
input/output identifiers: none of the variables in the set V, as defined by Eq. (4.2), is 
allowed to be declared as an output variable in more than one of the elements. The 
reason for this requirement is to guarantee state consistency for all variables at each 
support instance. Indeed, if a variable were declared as an output variable in more than 
one element of a structure system, its states would be determined (controlled) at each 
support instance by all these elements, which would normally lead to inconsistencies 
(determination of several different states of the variable at the same support instance). 
Such inconsistencies would be avoided only if all the elements acted on the variable in 
unison, which is a singular and rather rare case. If it occurs, however, then anyone of the 
elements is sufficient to control the variable and nothing is lost by the demand that only 
one of them (anyone) may be declared as the controlling element. It is appropriate to 
refer to this requirement, which must be satisfied by all directed structure systems, as the 
requirement of control uniqueness. 

The classification of variables of each element of a directed structure system into 
input and output variables and the requirement of control uniqueness have some 
important implications for the notion of couplings between elements. Given two 
elements x, y of a directed structure system, two directed couplings must be defined for 
them. One of the couplings, which is directed from x to y, is denoted by Cx •y and defined 
as 

CX,y = :x:y n YX. (4.8) 

The other one is a coupling from y to x; it is denoted by Cy.x and defined as 

Cy,x = YY n xX. (4.9) 
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Since 

for x =1= y 

(due to the requirement of control uniqueness), clearly, 

(4.10) 

for different elements x, y. 
In addition to the couplings between elements of a directed structure system, there 

are also couplings between the elements and environment of the system. For 
convenience, let the environment be viewed as a special element with the unique label 
x = O. Although the environment is actually not an element of the structure system [as 
follows from (4.6)], this view enables us to define directed couplings Co.x and Cx•o 
(x e Nq ) between the environment and elements of the structure system in the same 
manner as the couplings between the elements. 

~ If a variable is declared as an output variable in some element x of a Sirected 
structure system, then this variable is not controlled by the environment (due to the 
requirement of control uniqueness) and, consequently, it is not included in any Co•x • If, 
on the other hand, a variable is not declared as an output variable in any element of the 
directed structure system, then there is no choice but to view it as a variable that is 
controlled by the environment. Hence, such a variable must be included in some Co.x.1t 
follows from these considerations that all variables in any x X that are not declared in 
any elements as output variables form the coupling from the environment to element x. 
Formally, 

Co•x = xX n( v- U YY) 
yeNq 

(4.11) 

for each xeNq • 

In order to characterize couplings Cx.o (xeNq ), let us consider variables in xy that 
are not declared as input variables in any element of the directed structure system under 
consideration. These variables are not included, by definition, in any of the couplings 
between elements of the structure system. Hence, there is no choice but to view them as 
being coupled to the environment, i.e., as being included in Cx•o. The remaining 
variables may also be included in Cx •o. Whether or not they are actually considered as 
being coupled to the environment is left to the discretion of the user. Formally 

xY n (v - U YX) S;; Cx.o S;; xy 
yeNq 

(4.12) 

for each xeNq • ~ 
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Example 4.5. A directed structure system with five source systems as its elements 
is defined for the purpose of studying the probation services offered by the State of 
New York for cases originating from complaints that are processed by criminal courts. 
The system characterizes the flow of the case workload through the criminal court and 
probation institutions. It represents a framework for data gathering and processing. 

The support in this system is time. Depending on the specific questions to be 
addressed, observations are made on a monthly, weekly, or even daily basis starting 
on some fixed date, say January 1, 1970. All variables involved in the system (set V) are 
defined as follows: 

VI -the total number of complaints received by the criminal court (during each 
individual period of observation-month, week, or day); 

V2 -the number of complaints that are carried toward the arraignment; 
V3 -the number of complaints that are dismissed; 
V4 -the number of cases that are held over for sentencing; 
V5 -the number of cases that are acquitted or discharged; 
V6 -the number of cases that are assigned for probation; 
V7 - the number of cases that are not assigned to probation (this includes cases where a 

fine or restitution is the only punishment, those where imprisonment is assigned, 
and those where an unconditional or conditional discharge is used); 

Vs - the number of cases which violate the conditions of probation; 
V9 - the number of cases that are discharged from probation; 
vlo-the number of cases that are discharged from the criminal court institution. 

The structure system under consideration consists of five elements. Their sets of 
input and output variables may be defined by Table 4.1 or, alternatively, by the block 
diagram in Figure 4.4. Blocks in the diagram, which are given some suggestive names, 
represent elements of the structure system and its environment. Connections between 
the blocks represent variables and indicate couplings between the elements (including 

TABLE 4.1 
Definition of Elements of a Directed Structure 
System Discussed in Example 4.5 (Equivalent 

to the Block Diagram in Figure 4.4) 

x xx xy 

I {vd {V2' v3 } 

2 {V2 } { V4, vs } 
3 { V4 , vs } { V6' V7 } 

4 {V6 } { Vs, V9} 

5 {V3' VS, (;7, V9} {VIO} 
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ENVIRONMENT OF 55,.... __________ --, 

x=o 

r------- ----- -- ----- -~--, 
SYSTEM 55 

COMPLAINT 
x=l 

TRIAL PHASE v3 
x=2 Vs 

v4 EXIT 
x=S vlO 

SENTENCING v7 vg 

x=3 

Vg v6 

I PROBATION 

I x=4 L ______________________ _ 

Figure 4.4. Block diagram of the structure system discussed in Example 4.5. 

the environment). The full set of couplings C x.y (x, y = 0, 1, ... , q) is conveniently 
described by the matrix in Table 4.2. Such a matrix is usually called a coupling matrix. 

Structure data systems (neutral and directed) are defined in a similar fashion as the 
structure source systems, namely, 

SD = {[(XV, XD)lxENq } 

sf> = {(XX, XY, xf»lx E Nq }. 

(4.13) 

(4.14) 

Since each data system contains a source system, the structure data systems must satisfy 
all the conditions that are required for the corresponding source systems (compatibility, 
irredundancy, control uniqueness). However, they are normally also required to satisfy 
a condition of local data consistency that is defined as follows: for each coupling 
variable, data associated with that variable in all elements in which it is included must be 
exactly the same. 
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TABLE 4.2 
Coupling Matrix for the Structure System Described in 

Example 4.5 

ex" 0 2 3 4 5 

0 0 {vd 0 0 0 0 
1 0 0 {v2 } 0 0 {V3 } 
2 0 0 0 { v4 } 0 {vs} 
3 0 0 0 0 {V6 } {V7 } 
4 0 0 0 {V8 } 0 {V9 } 
5 {v IO } 0 0 0 0 0 

~ Formally, if 

then 
for all WEW, 

where XVi, W' 'Vi, w (w E W) are subsets of data associated with Vi in elements x and y, 
respectively. .... 

Structure data systems are normally assumed to be locally consistent. However, 
when the data sets associated with the individual elements are collected independently 
of each other, possibly by different experimental teams, the resulting family of data sets 
may not satisfy the condition of local data consistency. A violation of this condition 
leads to similar inconsistencies at higher epistemological levels and it is necessary to 
resolve them at some point in the investigation. Procedures for resolving local 
inconsistencies in structure systems have not been adequately developed as yet. It seems, 
however, that it is generally easier and more meaningful to resolve local inconsistencies 
in structure generative systems (introduced in Section 4.4) than in structure data 
systems. For this reason, the problem of resolving local inconsistencies is discussed in 
terms of structure generative systems. 

4.4. STRUCTURE BEHAVIOR SYSTEMS 

Every system has an author and the author pursues his own interests within the 
system. 

-w ALTER VON LUCADOU AND KLAUS KORNWACHS 

Structure generative systems are defined in the same general form as are the other 
types of structure systems. They must satisfy the conditions of compatibility and 
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irredundancy that are required for structure source systems. They must also satisfy 
some additional conditions regarding the masks and behavior or ST-functions of their 
elements. The fact that the set of sampling variables of a generative system is generally 
larger than the set of variables in the corresponding source or data systems opens some 
new possibilities in integrating generative systems into a structure system. 

As shown in Section 3.7, every ST-system can be converted to an isomorphic 
behavior system. It is thus sufficient to discuss structure generative systems under the 
assumption that their elements are behavior systems, i.e., to discuss them, without any 
loss of generality, in terms of structure behavior systems. 

Suppose that it is desirable to integrate a given set of behavior systems into a 
structure system. For each behavior system under consideration, identified as element x 
of the structure system (x e N q), let x V and x S denote the set of variables in its source 
system and the set of its sampling variables, respectively, and let 

V= U xV={vilieN IV1 }, (4.15) 
xeN. 

S = U XS = {Sk IkeN IS1 }' (4.16) 
xeN. 

Clearly, 
V£ Sand XV£ xs (4.17) 

for all xeNq • 

The neutral version SF B of a structure behavior system can now be defined as 

(4.18) 

To obtain a unique identification of elements x by sets xs, it is assumed that sampling 
variables in all sets xs (x e N q) are identified by the same index k that is employed as an 
identifier of the variables in the full set S [Eq. (4.16)]. Couplings CX,y between elements 
x, yeN q of a structure system SF B are defined now in terms of the sampling variables by 
the set intersection 

(4.19) 

In the form (4.18), which does not contain any commitment to a generating order 
and the resulting partition of sampling variables in sets xs (x e N q) and S into generating 
and generated variables, the only additional condition that is normally required for SF B 

is that the equation 

(4.20) 

be satisfied for all pairs of elements x, yeN q' This condition ensures that projections of 
behavior functions YB, YfB for every pair of elements in SF B with respect to variables they 
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share (coupling variables) are equal. This is basically a requirement that variables in 
different elements that are viewed (defined) as equal actually be equal when abstracted 
from the context of their respective elements. Let it be referred to as the requirement of 
local behavior consistency. 

As previously mentioned, behavior systems xF B representing elements of SF Bare 
often derived in practical situations from locally inconsistent sets of data and, 
consequently, do not satisfy the requirement of local behavior consistency. In order to 
be able to deal with such structure systems in various problem contexts, their 
inconsistencies must be resolved first. This issue is discussed in Section 4.11. Everywhere 
else in this chapter, it is assumed that structure behavior systems are locally consistent. 

When a generating order is specified for a structure behavior system SF B, the set S 
of all sampling variables in SF B becomes partitioned into generating and generated 
variables, denoted Sg and Sg, respectively. The resulting structure system must satisfy the 
requirement of control uniqueness. Its meaning in this case is that each variable in Sg 
must be generated by one and only one of the elements of the structure system. This 
means, in turn, that sets XSg (x E N q) of generated variables associated with the individual 
elements of the structure system must form a partition of the set Sg. 

Focusing on a particular element x (x E N q) of a structure system SF B' consider now 
the set 

of variables. It is a set of generated variables (from the global point of view) that are 
coupled to element x, but are not generated by the element. From the local viewpoint of 
the individual elements, these are clearly input variables, even though they are generated 
variables from the global viewpoint of the structure system. This means that the element 
itself must be considered a directed system while, at the same time, the structure system 
is viewed as neutral in the sense that the variables in set V are not classified into input 
and output variables. This does not indicate any inconsistency on the definition of 
structure behavior systems. It is merely a result of the fact that structure systems 
encompass two coexisting veiwpoints-the local one (represented by their elements) 
and the global one (represented by structure systems as wholes). From the local point of 
view, all elements to which an element is coupled form its environment. It is a sort of 
internal environment, defined solely within the structure system. From the global point 
of view, no environment (or external environment) is recognized. It seems preferable in 
this case, however, to view the structure system as a directed system in which all 
variables in set V are declared as output variables. 

It remains to discuss the role of the set Sgof generating variables in the individual 
elements of a structure system, i.e., the meaning of the variables in the sets 

for each x E N q' State of these variables must be made available within the element at 
each step of the generative process as required by its behavior function. They can be 
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made available either internally-i.e., derived in the usual way from their previous states 
as well as previous states of generated and input variables, or externally-i.e., in terms of 
input variables representing couplings from other elements of the structure system. The 
variables are thus viewed either as generating variables or as input variables of the 
element. It is up to the user to decide between the two alternatives. In either case, let 
these variables be denoted by xSij. A specification oftheir actual role is included in the 
definition of the behavior system representing the element as well as in the definition of 
directed couplings between the elements. 

It follows from the previous discussion that generative behavior systems integrated 
into a structure system must often be viewed as directed systems. Since this view is 
always possible, we define 

(4.21) 

with the understanding that no meaningfull definition of SFGB is necessary. 
This definition includes the special (degenerate) case in which none of the variables 

in V is declared as an input variable. Symbols XSg and xSe denote sets of generated and 
input variables of elements x, respectively; symbol xSij denotes the set of variables 
introduced and discussed in the previous paragraph. Depending on the alternative 
chosen, it may contain input or output variables of the element. As in the previous 
definition of a structure behavior system, it is assumed that variables in each of these 
three sets and all elements x E N q are identified by the index k defined by Eq. (4.16). For 
each xENq , the three sets of variables form a partition of the set xS. In addition, for 
some yE Nq U {O}, variables in set XSg participate only in couplings Cx." while those in 
set xSe participate only in couplings C,.x; variables in XSg may participate in couplings 
of either direction or in no couplings at all. 

Let structure systems of the form (4.18) or (4.21) be called structure behavior 
systems of the basic type and the generative type, respectively. Given a structure 
behavior system of the basic type, it is clear that a family of structure behavior systems of 
the generative type can be derived from it. Structure systems in this family differ from 
each other in 

i. the partition of S into SlI and Sg; 
ii. the partition of Sg into XSg (x E N q); 

iii. the use of variables in sets xSlI (x E N q). 

Partitions (i) are determined by the various generative orders (e.g., generative orders 
oriented to prediction or retrodiction). Partitions (ii) are determined by overlaps of 
variables in set Sg among the elements of the structure system. More specifically, a 
variable of set Sg that is included only in one of the elements must obviously be 
generated by that element. On the other hand, a variable that is shared by several 
elements can be generated by anyone of them, but only one of them. Which one is 
chosen to generate it is normally decided on the basis of the generative uncertainty (the 



www.manaraa.com

198 CHAPTER 4: STRUCTURE SYSTEMS 

smaller the generative uncertainties resulting from each choice, the more preferable is 
the alternative) and, possibly, by some additional preference criteria specified by the 
user. Alternatives (iii) do not have any influence on the generative uncertainty of the 
chosen structure system. They are solely variations of the formal representation. The 
user should be given a chance to express his preference for a particular alternative; ifhe 
has no preference, one of the alternatives should be used as a default definition. 

Example 4.6. Consider a structure system of the basic type (4.18) that consists of 
two subsystems based on the same totally ordered support set. Each of the elements 
contains two binary variables whose constraint is characterized by a probabilistic 
behavior function. Masks 1 M, 2M and behavior functions lIB' 2IB of the elements are 
specified in Figures 4.5a and 4.5b, respectively. The structure system clearly satisfies the 
irredundancy requirement. It is also locally consistent as demonstrated in Figure 4.Sc. 

The full mask and block diagram, as well as the two partial masks, are illustrated in 

ELEMENT x = 1 ELEMENT x = 2 

p= -1 0 p= -1 0 
(a) 

v, tEE v2 tEE ='M =2M 

v2 3 4 V3 5 6 

5, 52 53 5. 'fB(cx) 53 5. 5s 5. 2fB(P) 

cx=o 0 0 0 0.05 P=o 0 0 0 0.05 

0 0 0 0.05 0 0 0 0.10 

0 0 1 0.10 0 0 1 1 0.10 

0 0 0 0.20 0 0 0 0.05 

0 0 0.05 0 0 1 0.20 
(b) 

0 1 0.05 0 1 1 0 0.05 

0 0 1 0.15 0 0 0 0.05 

0 0 0.15 0 0 0.10 

0 1 0.15 0 0 0.10 

0 0.05 0 0.05 

0 0.05 

1 0.10 

53 5. ['fB! {53' 54 }l (1') [2fBH5 3,5.}l (1') 

1'=0 0 0.25 ( = 0.05 + 0.20) 0.25 (= 0.05+0.10+0.10) 

(c) 
0 1 0.30 (= 0.15 + 0.15) 0.30 ( = 0.05 + 0.20 + 0.05) 

0 0.30 ( = 0.05 + 0.05 + 0.15 + 0.05) 0.30 ( = 0.05 + 0.10 + 0.10 + 0.05) 

0.15 (= 0.10+0.05) 0.15 (= 0.05+0.10) 

Figure 4.5. Illustration to Example 4.6. 
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Figure 4.6a. The remaining block diagrams and masks in Figure 4.6 are characteristic 
examples of some of the generative types of structure systems that can be derived from 
this basic type. 

To calculate the total number of substantially different structure systems of the 
generative type that can be derived in this example from the basic type, let us assume 
that the coupling to the environment contains all generated variables as well as any 

p = - 1 0 g g g g 

"~ ~ BIB v2 3 4 3 4 3 4 

v3 5 6 5 6 5 6 

t • .. 
51 52 g 51 52 g 

mt' ~) tffij 3 4 3 4 3 4 _: 54 

~ mpt' 5 6 5 6 5 6 

55 56 55 56 55 56 ii 

(a) (b) (c) 

g g g g g g 

~ ~ ~ 3 4 3 4 3 4 

5 6 5 6 5 6 - - -52 52 ':;1 
g g 

~i ffii' ~' 3 4 e 3 4 e 3 4 
s3 e e 

ffiJt m-' ~g 5 6 g 5 fi 5 6 

g g g 
56 56 55 

(d) (e) (f) 

Figure 4.6. Basic type of a structure behavior system and some of the derived generative types 
(Example 4.6). 
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other variables that are considered as coupling variables. Then, there are 24 generative 
structure systems in this example for either of the two generative orders (prediction, 
retrodiction). They are obtained for the case of prediction by combining the following 
alternatives for some of the variables involved: two possibilities for variable Sl and two 
possibilities for variable s 5 (these variables are either considered as coupling variables or 
not); three possibilities for variable S3 (it is either not considered as a coupling variable 
at all, or else it has one of two possible directions); two possible directions of variable S4' 

Counting both of the generative orders, there are thus 48 possible generative structure 
systems in this example. Further alternatives can be distinguished for each of them by 
different definitions of couplings to the environment. 

Five examples of the 48 alternatives, which illustrate the main issues, are specified 
in Figures 4.6b-4.6f. For convenience, let us refer to them as systems b, c, ... , f, 
respectively. The first four alternatives (systems b--e) are oriented to prediction, while 
the last one (system f) is oriented to retrodiction. 

Structure systems b, c are similar in the sense that in both cases all sampling 
variables are incorporated in the various couplings. They differ in the role of variables 
S3' S4' In system b, variable S4 is generated by the first element (in terms of the function 
11GB' uniquely derivable from liB defined in Figure 4.5b) and both variables S3' S4 are 
used as input variables of the second element. In system c, the role of variables S3, S4 with 
respect to the elements is inverted. The two systems can be compared by values of their 
generative uncertainties associated with variable S4' They are 0.2427 and 0.6754 for 
systems band c, respectively. (Their calculation, which is explained in Section 3.5, is left 
to the reader as an exercise.) System b is thus preferable because it generates states of 
variable S4 with considerably less uncertainty than system c (about 36 % of the 
uncertainty of system c) and, consequently, it is a better predictor than system c. 

System d is similar to system c in the sense that they both generate variable S4 in the 
same way. They differ in the role of variables Sl' S3' S5 as coupling variables and in the 
formal definition of the first element. In spite of these formal differences, systems c and d 
generate data in basically the same way. The same holds also for system e. Its only 
difference from system d is that variable S3 is used as input variable of the second 
element rather than its generating variable. 

System f is one of the 24 retrodictive structure systems in this example. The main 
issue regarding these alternatives is to make a decision which of the two elements is 
preferable to generate variable S 3' The generative uncertainties are 0.8609 (for system f) 
and 0.9559 (for a system in which S3 is generated by the second element). Although the 
generation of S3 by the first element results in somewhat less uncertainty, the difference 
is much smaller than for the predictive case. 

Example 4.7. To illustrate the flexibility in defining structure systems, assume 
that four different products-a, b, c, d-are manufactured by four different divisions of 
a manufacturer. Assume further that 

i. to produce one unit of product a requires two units of product b and three units 
of product c; 
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ii. to produce one unit of product d requires two units of product a, one unit of 
product c, and four units of product b. 

Each division is interested every day in how much of its own product it must 
manufacture. Let these quantities be represented by variables Po, Pb' Pc> Pd' They are 
each determined by their order quantities and inventories and by the amount required 
by other divisions to manufacture their own products. Let the first two quantities be 
represented by variables 00' 0b' 0c' 0d and io' ib, ic> id, respectively. The latter quantities 
are determined by the values Po, Pb' Pc, Pd' 

Let variables associated with each division (those with the same subscript) be 
viewed as variables that form an element of a structure system, together with the 
variables Po, Pb' Pc, Pd that determine the amount of product of the given division that 
must be supplied to other divisions. Then, the structure system consists of four elements 
that are coupled according to the block diagram in Figure 4.7. Input variables of each 
element, which represent information about the order and inventory quantities, as well 
as the demands of the other divisions, are determined by the environment (sales division 
and warehouse) and by the other manufacturing divisions. Each element is a 
memoryless, deterministic, and directed behavior system whose support is time. Let us 
define behavior functions of the elements by the following simple equations: 

afB 

°fB: Po = 00-io+2Pd, 

bfB: Pb = Ob- ib+ 2Po+4Pd' 

cfB: Pc = oc- ic+ 3Po+Pd' 

dfB: Pd = 0d - id· 

bf 
B 

cfB 

-

Pc 

df 

Figure 4.7. Structure system described in Example 4.7. 

B 
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Example 4.8. The aim of this example is to show that the irredundancy 
requirement for structure systems is not in conflict with the notion of redundant 
systems, as used in engineering (particularly computer engineering) for error detection 
and correction. One of the simplest error correcting schemes consists of three systems 
that perform the same task in parallel by operating on the same input variables. Such a 
scheme is illustrated in Figure 4.8 by three serial binary adders operating on variables V 1 

and V2 . States of their output variables V3, V4 , Vs are equal under normal operation, but 
one of them may differ from the other two when an accidental error occurs or when one 
of the units becomes defective. To recognize such situations and allow the whole system 
to continue its operation, states of the output variables of the three identical units are 
evaluated by two special systems. One of them is named "majority" in Figure 4.8. It 
selects the state of the output variables (0 or 1) that is represented by at least two of the 
variables V3 , V4 , vs , i.e., the state of its output variable V6 is equal to the state represented 
by the majority of its input variables. The aim of the second special subsystem, which is 
named "error message" in Figure 4.8, is to recognize any disagreement among states of 
variables v 3 , V4 , Vs and generate an error message in such cases. Its behavior can be 
described by the statement: V7 = 1 (error message) iff all states of variables V3, V4, Vs are 
not the same; otherwise, V7 = 0 (normal operation). Error messages that occur rarely 
provide information about accidental errors; their frequent occurrence is an indicator 
that one of the three basic units (adders) is defective. 

We can see that the irredundancy requirement is not violated by the structure 
system in Figure 4.8. Although the system contains redundant subsystems (two of the 
three adders), these are distinguished by their output variables and, under a more 

r---------------------, 
I 

Vl ~~+-----~~--~'-----' 

v2 ----~--~~~~~r---, 

MAJOR IT Y 

I 
I 

L ____________________ J 

V6 

Figure 4.8. Simple error-correcting structure system (Example 4.8). 



www.manaraa.com

SEC. 4.4: STRUCTURE BEHAVIOR SYSTEMS 203 

refined view, by their internal variables. The "engineering" redundancy is thus totally 
different from the redundancy that is prohibited by the irredundancy requirement. The 
former meaning of redundancy is that the same operation is executed by several distinct 
units in parallel; they are distinguished by different output (and internal) variables. The 
latter meaning of redundancy is that a structure system contains a system that is either 
indistinguishable from another system or is a subsystem of another system in the 
structure system. 

Example 4.9. The structure system discussed in the previous example and 
depicted in Figure 4.8 is used in this example to illustrate levels of structure refinement. 
Let us look in more detail at one of the blocks in Figure 4.8-the serial binary adder. Its 
behavior is usually described by the equations 

Zt = xt + Yt + cr- 1 (modulo 2), 

Ct = (xt + Yt +Ct - 1 -Zt)/2, 

(a) 

(b) 

where x" Yt are states ofthe input variables at time t that represent digits of two binary 
numbers (ordered in time by their increasing significance), Zt is a state of the output 
variable (the sum digit) at time t, and ct (ct _ d is a state of an internal variable that 
represents the carry at time t(t -1). According to this description, the binary. adder is 
viewed as a structure system whose block diagram is shown in Figure 4.9a. Its elements, 
which represent Eqs. (a), (b), can be further refined and viewed also as structure systems. 
For instance, the element representing Eq. (b) can be represented as a structure system 
whose elements are standard logic functions of two variables (Figure 4.9b). 

We can now see the meaning of the dual processes of structure coarsening and 
structure refinement. By structure coarsening, the error correcting structure system in 
Figure 4.8 becomes integrated as an element in a larger structure system (an arithmetic 
unit). By further structure coarsening, the latter structure system becomes an element of 
a structure system still larger (a central processing unit of a computer), etc., until some 
ultimate level of integration is reached for a particular purpose. By structure 
refinement, on the other hand, any element of the error correcting system (e.g., the 
adders) can be viewed as an appropriate structure system (e.g., the one depicted in 
Figure 4.9a), any element of the latter structure system can be again viewed as a 
structure system (Figure 4.9b), etc., until some ultimate level of refinement is reached for 
a specific purpose. 

Two or more levels of structure refinement can also be incorporated in a single 
system, i.e., a structure system whose elements are structure systems, whose elements 
are structure systems, whose ... , etc. This recursion must end, of course, with elements 
that are not structure systems. 

Let structure systems that contain several refinement levels be called multilevel 
structure systems and let such systems be denoted by a generalized operator Sk, where k 
indicates the number of refinement levels involved. For example, S2FB denotes a two
level structure behavior system, i.e., a structure system whose elements are structure 
behavior systems. 
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r--- -- - --- ----- -- - - --, 
X t - I 

Y t ~~~--~~~----------------------~ 

I (a) 
I 
I 
I 
I 

I I 
Ct I 

I I L ____ _____ __________ I 

r--------------, 
Xt-t----------------------~ 
v _ L ---___ ------~ 
, t I 

ct · 1 -1------1------.. 

(b) 

L _____________ _ 
c t 

Figure 4.9. Illustration of structure refinement and coarsening (Example 4.9). 

4.5. PROBLEMS OF SYSTEMS DESIGN 

Hierarchy is one of/he central structural schemes that the archilect of complex it y 
uses. 

- H ERBERT A. S IMON 

Structure systems are involved in some of the most fundamental systems problems 
encountered in the contexts of both systems inquiry and systems design. In general, 
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these problems are systems formulations of the various questions associated with the 
relationship between wholes and parts. The whole-part issues that arise in the context 
of systems inquiry are substantially different from those connected with systems design. 
In this section, the role of structure systems is outlined with respect to systems problems 
involved in systems design. Their role in systems inquiry, which is conceptually more 
intricate and methodologically less developed, is discussed in more detail in the rest of 
this chapter. 

As discussed in Section 3.10, the first stage in systems design consists in deriving a 
generative system that represents the task the system under design is supposed to 
perform. In general, the task is some transformation from states of relevant input 
variables to states of output (or task) variables. Hence, the derived generative system is 
always directed. In addition, it is usually a deterministic system. It is often not unique, as 
illustrated by the following example. 

Example 4.10. Consider again the serial binary adder introduced in Example 4.9. 
Its task is to add two binary numbers that are delivered in time, digit by digit, in 
increasing order of significance of their digits. The usual behavior system that is 
employed to represent this task is the one described in Example 4.9. It consists of the 
mask and behavior specified in Figure 4.10a. In addition to the input and output 
variables x, y, z, in terms of which the task is fully expressed, the system contains an 
internal variable c, which is known as the carry. An alternative behavior system for the 
same task, which does not contain any internal variable, consists of the mask and 
behavior specified in Figure 4.10b. 

We can see that the two behavior systems are totally different, even though both of 
them perform the same task in terms of the required transformation from the input 
variables x and y to the output variable z. The differences, which can be recognized 
quite clearly by comparing their masks, imply necessary differences in structure by 
which the behaviors are implementable. For example, if we assume that the lagged 
variables (those defined by p = -1) are made available in the system directly by delay 
operators, the two behavior systems imply structure systems in Figures 4.9a and 4.1Oc, 
respectively. The two structure systems, which are indistinguishable from the 
standpoint of the environment (Le., in their tasks), represent quite different bases for 
further design. One of them may be chosen by the user according to some preference 
criteria, or else the design process continues for both of them and a selection is made at 
some later stage. 

After a particular generative system that represents the required task is selected, 
the aim of the next stage in the design process is to determine a structure system that 
satisfies the following requirements: 

i. it implements the behavior or ST-function of the selected generative system; 
ii. all of its elements are generative systems with some specified (admissible) 

behavior or ST-functions; 
iii. it satisfies certain objective criteria specified as desirable; 
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p= -1 0 

x e 

y 53 = 5, + 5, + 5. (mod 2) 

5, = [5, +5,+5.-(5, +5 , +5.) (mod 2)1/2 
Z g 

(a) 

c 

~ 

p= -1 0 

x 

y 

z 

4 e 

53 = {5, +5,+ [5.+5 5-5. +(5.+5 , -5.) (mod 2)1/2} (mod 2) 

(b) 

6 g 

r-------------
51 (=x) I 

52 (=y) I 
I I ~ I 
I 

54 
Equation in 55 

I s6 
Delays 

I Fig. 4 .106 

I j I 
I L ___ 

~---------s3 (=z) 

- -, 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

__ J 

Figure 4.10. Two alternative behavior systems representing the serial binary adder 
(Example 4.10). 

iv. it belongs to a specified class of structure systems (i.e., it satisfies some structure 
constraints); 

Requirement (i) is obvious: since the structure system is supposed to perform the 
required task and the task is represented by the behavior or ST-function of the chosen 
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generative system, this function must be, in turn, represented by the structure system. 
Requirement (ii) expresses the available technological resources. It is an inventory of all 
modules (components, building blocks) that are acceptable for constructing the 
structure system under design. It is important to make sure that the chosen types of 
elements are sufficient to implement the given generative system. Requirements (iii) and 
(iv) are optimization objectives and constraints, respectively. There is a great variety of 
possible objective criteria and constraints. They are often combinations of several 
factors connected with cost, complexity, regularity, response time, reliability, test
ability, maintainability, etc. 

The problem of implementing the given behavior or ST-function by the specified 
types of elements is, in principle, the problem of finding a suitable decomposition 
(suitable with respect to the objectivity criteria and constraints) of the functions 
associated with the individual output variables of the given system into functions 
represented by the given types of elements. 

~ One approach to this problem, which is applicable only in special cases, is the 
use of suitable formal rules of an algebra whose operations correspond to the functions 
represented by the elements. Assuming the system under design is deterministic, this 
approach involves the following steps: 

(a) An algebraic expression is determined for each of the functions associated with 
the individual output variables. It may, for example, be a convenient canonical form of 
some sort. These algebraic expressions represent a specific way of composing the 
functions of the system under design from functions associated with the elements. As 
such, they satisfy requirements (i) and (ii) of the design problem. If no objective criteria 
and constraints are required, which is unlikely, the design problem is completed at this 
point. 

(b) The expressions are modified, by employing various rules of the algebra to a 
form which satisfies the objective criteria and constraints. In general, there are several 
solutions. It is usually sufficient to determine one of them. 

Another approach to the decomposition problem, which is applicable to discrete 
systems, consists in performing the decomposition independently of any algebraic 
assumptions, by operating on direct definitions of the functions involved (in their 
tabular, matrix, or any other convenient form) or to employ appropriate functional 
equations. To illustrate this approach, let us assume, for the sake of simplicity, that each 
of the available elements has two input variables and one output variable. Symbols of 
the input and output variables of the behavior system under design and one of the 
elements are introduced in Figure 4.11a. It is assumed that each of the output variables 
is a function of the input variables, namely, 

Vn + l =f,,+l (VI' V2 ,···, vn ) 

Vn +2 =f..+2 (VI' V2 , ..• , Vn) 
(4.22) 
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1 
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(b) 

Figure 4.11. Illustration of the decomposition method of systems design. 

for the system under design, and 

(4.23) 

for the element. Imagine now that the element is incorporated into system FB in such a 
way that its output variable is made identical with one of the output variables of FB , say 
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variable vR + i • This leads to a structure system whose block diagram is shown in 
Figure 4.11 b. It consists of two subsystems, one represented by the element, the other 
one by a modification of system F B. The structure system contains two variables, Z I and 
Z l' which were not included in the original system F B' Since variables VR + i and yare 
viewed in this structure system as identical, the functional equation 

must be satisfied. A solution of this equation consists of two functions 

Xl = hl(V 1 , Vl ,···, VR)' 

X 2 = h2 (v 1 , vl , ••• , Vn)' 

(4.24) 

(4.25) 

To qualify as a solution of Eq. (4.24), these functions must, of course, satisfy the 
equation when substituted for variables XI> Xl' Since variables XI' Xl are in this case 
viewed as identical with the new variables Z I , Z l' respectively (see Figure 4.11 b), we can 
rewrite Eqs. (4.25) as 

Zl = hi (VI' V l , ... , vR) 

Zl = hl (VI' v l ,· .. , Vn)' 

(4.26) 

There are usually many solutions of the functional equation (4.24). The main 
problem is thus to select one of them. First, the set of solutions is reduced by excluding 
solutions that violate the specified structure constraints. Second, we search for 
solutions in which functions hI> hl are dependent on the least number of variables VI' 

Vl , ... , VR • Indeed, the smaller this number, the more powerful is the decomposition 
and the easier it is to further decompose functions hI> hl , if necessary. The 
decomposition is particularly effective if the functions hi' hl are dependent on disjoint 
subsets of those input variables on which the function under decomposition depends 
(function in + i in our illustration). Third, the remaining solutions are ordered by the 
objective criteria and those which are not inferior in all criteria (or a subset of them) are 
accepted as a basis for further decomposition. 

The decomposition step illustrated in Figure 4.11 b must be repeated for all output 
variables v R + I, v R + l, .•. , v R + m and, if necessary,for the new variables Z I, Z l, ... , which 
are introduced by the decomposition process. No further decomposition is needed at 
those decomposition locations at which all new variables become identical with some of 
the input variables VI' Vl , ... , vn.1t is clear that different elements must be tried at each 
decomposition step and their acceptable decompositions compared. 

The repeated decomposition is illustrated in Figure 4.12. For the sake of simplicity, 
only the type of element introduced in Figure 4.11a is employed. Figure 4.13 illustrates 
some efficient types of decompositions of a system with a single output variable by 
elements with two input variables and one output variable. Included are all those 
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r---
/FS 

__________ J __ , 

F S modified by decompositions 

L ____ _ _ ____ .....1 

Figure 4.12. Illustration of a possible situation after seven decomposition steps. 

decomposition types for n = 3, 4, 5, 6 in which the new variables in each decomposition 
step are dependent on disjoint subsets of the input variables inherited from the 
preceding decomposition. These are the most desirable decomposition types. Numerals 
in Figure 4.13 indicate the number of input variables on which each of the output or 
intermediate variables depends .... 

It is not hard to see that the computational complexity of the design problem 
grows extremely rapidly with the number of input and output variables of the system to 
be designed, as well as with the number of admissible element types. For example, with 
n input variables, m output variables, and one element type with two input variables and 
one output variable, the number of decomposition steps ofthe efficient type illustrated 
in Figure 4.13 is equal to the product (n -l)m, while it is equal to e(n-l)m for e element 
types (e ~ 2). Each decomposition is associated, of course, with solving an appropriate 
functional equation, evaluating and comparing its solutions, and selecting some of 
them as prospective candidates for the overall design. 

There are two principal ways of making a complex design problem manageable. 
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~ ~ 
n=3 n=4 

Figure 4.13. Examples of desirable decompositions based on elements with two input variables 
and one output variable. 

One of them is to organize the overall task as a hierarchy of partial tasks in such a 
manner that the design complexity is modest at each level of the hierarchy. Such an 
organization usually has some additional advantages connected with reliability, 
testability, and repairability. The other way of reducing design complexity is to relax the 
objective criteria. Instead of requiring an optimal design, we accept a "good" one or a 
"satisfactory" one. This attitude toward systems design, which allows the use of 
heuristic methods, is called satisficing. 

Due to the great variety in possible element types, it would be a difficult task to 
incorporate into the GSPS the various specialized design methods, based on specific 
algebras or specific types of functional equations. In this respect, the GSPS should serve 
as an information source. If some specialized method is available for the design 
problem defined by the user, the GSPS should provide the user with adequate 
information about it. The facilities of the GSPS for dealing with design problems at the 
level of structure systems should be developed in terms of the general decomposition 
approach, as outlined in this section, and in both the optimization sense (for small 
problems) and the satisficing sense (based on appropriate heuristic methods). 
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4.6. IDENTIFICATION PROBLEM 

... given the properties of parts and the laws of their interaction, it is not a trivial 
matter to infer the properties of the whole. 

-HERBERT A. SIMON 

Two complementary problems associated with the relationship between overall 
behavior systems and the various sets of their subsystems arise prominently in systems 
inquiries. One of them is based on the assumption that a behavior system, which is 
viewed as an overall system, is given. The aim is to determine which structure systems, 
each based on a set of subsystems of the given overall systems, are adequate for 
reconstructing the given overall system with an acceptable level of approximation. In 
the second problem, a structure behavior system is given and the aim is to make 
inferences about the unknown overall system. 

These problems have been referred to in the literature as the reconstruction 

problem and identification problem, respectively. The identification problem is a subject 
of this section; the reconstruction problem is discussed in the next section. 

The identification problem involves two subproblems. The aim of one of them is to 
determine the set of all overall behavior systems that are represented by the given 
structure system in the sense that behavior functions of its elements are projections of 
the behavior function of any of these overall systems. Such a set of overall systems is 
called the reconstruction family of the structure system under consideration. The aim of 
the second subproblem is to choose one overall system from the reconstruction family 
that represents, in some specific sense, the best hypothesis of the actual ovenul system. 

RECONSTRUCTION FAMILY 

Consider a structure behavior system SF of the form (4.18)* whose elements are 
represented by sets xS of sampling variables and behavior functions Y(x E N q). We say 
that a behavior system is comparable with the given structure system SF ifboth systems 
are defined in terms of the same supports and variables, and both employ the same type 
of behavior functions (such as probability or possibility distribution functions). Let <c SF 

denote the set of behavior functions of all behavior systems that are comparable with 
SF and let fFSF denote the set of behavior functions of all behavior systems in the 
reconstruction family of SF. Then, f E fFSF if and only iff E <c SF and 

[f 1 XS] = Y (4.27) 

* Since no confusion can arise in the rest of this chapter, subscripts B are omitted in symbols associated with 
behavior systems. 
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for all xeNq • For probability or possibility behavior functions, Eq. (4.27) is expressed 
by a set of equations 

"!("c) = L j(c) (4.28) 
c>Xc 

or 

"j("c) = max j(c), (4.29) 
c>Xc 

respectively, where xeNq • Values "j("c) are given in these equations; valuesj(c) are to 
be determined for all overall states of the variables involved. Let c e C and "c e "C for all 
xeNq • 

To obtain values j(c) that are acceptable as probabilities or possibilities for states 
c, Eqs. (4.28) or (4.29) must be supplemented with (constrained by) the requirement that 
j(c) ~ 0 for all ceC. Althoughj(c) must also satisfy some additional requirements, 
such as j(c) ~ 1 and 

L j(c) = 1 
ceC 

for probabilistic systems, it is easy to see that these additional requirements are in fact 
implied by the form of the equations and the requirement that j(c) ~ 0 for all c e C. 

The relationship between a given structure system and the overall behavior 
systems it implies is thus described by a set of 

equations of either the form (4.28) or form (4.29) in Ie! unknowns, j(c), that are 
constrained by the inequalitiesj(c) ~ 0 for all ce C. Some of the equations are usually 
dependent on others and may be excluded from the set. If the given structure system is 
consistent, then the resulting set of essential equations [e.g., linearly independent 
equations of the form (4.28)] has at least one solution in the required domain of 
nonnegative real numbers. 

The identification of the overall behavior system from the given structure system 
is unambiguous if and only if the solution to the constrained set of equations exists (i.e., 
the structure system is consistent) and is unique. This seems to be a rather rare case. If 
the solution is not unique, which is considerably more frequent, the identification is 
ambiguous. This means basically that the actual overall system, while embedding all 
information regarding the constraint among the variables involved that is available in 
the structure system, contains some additional information. This fact gives a concrete 
meaning to the notorious claim of systems science that "the whole is more than the sum 
of its parts." 
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TABLE 4.3 
Elements of the Structure System in Example 4.11 

vI V2 Ifec) V2 V3 2fec) VI V3 3fec) 

Ie =0 0 0.4 2C = 0 0 0.4 3C = 0 0 0.4 
0 1 0.3 0 1 0.2 0 1 0.3 

0 0.2 0 0.1 0 0.1 
0.1 0.3 0.2 

Example 4.11. Consider a structure system whose elements are memoryless 
behavior systems, each containing two of three variables V l , V2' v3 • Two states, 0 and 1, 
are recognized for each of these variables. Behavior functions If, 2f, 3f of the elements 
are probabilistic and are defined in Table 4.3. The structure system is locally consistent, 
as we can easily verify. For instance, the probability of V2 = 0 is 0.6 (and 0.4 for V2 = 1) 
regardless whether it is calculated as a projection from If or 2f. 

Let symbols Po, Pl' ... , P7, defined in Table 4.4, be used for the unknown 
probabilities of states of the overall behavior systems. Then the reconstruction family 
of the given structure system is characterized by the inequalities Pi ~ 0 (i E No, 7) and 12 
equations of the form (4.28): 

PO+Pl = 0.4 

P2 + P3 = 0.3 

P4+PS = 0.2 

P6 + P7 = 0.1 

(1), Po + P4 = 0.4 (5), PO+P2 = 0.4 

(2), P3 + P7 = 0.3 (6), Pl + P3 = 0.3 

(3), Pl +Ps = 0.2 (7), PS+P7 = 0.2 

(4), P2 + P6 = 0.1 (8), P4 +P6 = 0.1 

TABLE 4.4 
Symbols Used in Examples 4.11, 4.12, 

and 4.14 

VI V2 V3 ftc) 

c=o 0 0 f(ooo) = Po 
0 0 f(ool) = PI 
0 0 f(010) = P2 
0 1 1 f(OII) = P3 

0 0 f(loo) = P4 
0 1 f(101) = Ps 

0 f(110) = P6 
f(111) = P7 

(9), 

(10), 

(11), 

(12). 
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By inspecting the equations, we observe that all the unknowns can be expressed in terms 
of one of them, say Po. Indeed, 

from (1): PI = O.4-Po; 
from (5): P4 = 0.4 - Po; 
from (9): P2 = 0.4 - Po; 
from (2): P3 = 0.3 - P2 = - 0.1 + Po; 
from (3): Ps = 0.2-P4 = -0.2+po; 
from (6): P7 = 0.3 - P3 = 0.4 - Po; 
from (8): P6 = 0.1- P2 = - 0.3 + Po. 

Hence, 

PI = P2 = P4 = P7 = O.4-Po, 

P3 = -0.1 + Po, 

Ps=-0.2+po, 

P6 = -0.3 + Po· 

(a) 

(b) 

(c) 

(d) 

Applying now the inequalities, we obtain for each of these equations a restriction 
upon Po: 

(a) and PI (or P2, P4' P7) ~ 0 implies Po :=; 0.4; 
(b) and P3 ~ 0 implies Po ~ 0.1; 
(c) and Ps ~ 0 implies Po ~ 0.2; 
(d) and P6 ~ 0 implies Po ~ 0.3. 

Since all of these restrictions must be satisfied, we may conclude that the solution range 
of Po is given by the inequalities 

0.3 :=; Po :=; 0.4. 

Given any value of Po within this range, values of all the other unknowns are uniquely 
determined by the equations (a)-(d). The reconstruction family can thus be defined as 
indicated in Table 4.5. 

Example 4.12. Consider a structure system whose elements are memory less 
behavior systems containing two-state variables VI, V2 and V2, v3 , respectively. Behavior 
functions If, 2f of the elements are probabilistic and are defined by the following tables: 

VI V2 Ifee) V2 V3 2fee) 

Ie = 0 1 0.3 2e = 0 0 0.1 
1 0 0.5 0 1 0.4 
1 1 0.2 1 1 0.5 
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VI 

C=O 
0 
0 
0 
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TABLE 4.5 
Reconstruction Family in Example 4.11 

V2 V3 Pi =J(C) 

0 0 0.3 ~ Po ~ 0.4 (degree of freedom) 
0 PI = O.4-Po 

0 P2 = 0.4-po 
I I P3 = -0.1 + Po 
0 0 P4 = 0.4-po 
0 I p, = -0.2+po 

0 P6 = -0.3+po 
P7 = 0.4-po 

To determine the reconstruction family of this structure system, let us use the same 
symbols for the unknown probabilities as in Example 4.11. Then, the reconstruction 
family is characterized by the inequalities Pi 20 (i E N O• 7 ) and the following eight 
equations: 

Po + PI = 0.0 (1) Po+P4=0.1 (5) 

pz + P3 = 0.3 (2) PI + Ps = 0.4 (6) 

P4 + Ps = 0.5 (3) pz +P6 = 0.0 (7) 
P6+ P7 = 0.2 (4) P3 + P7 = 0.5 (8) 

From (1), (7), and the inequalities, we obtain Po = PI = pz = P6 = O. Then, by trivial 
considerations, the remaining unknown probabilities are determined: P3 = 0.3, 

P4 = 0.1, Ps = 0.4, P7 = 0.2. Hence, the identification is in this case unique. That is, the 
example illustrates one of the rare special cases in which "the whole is equal to the sum 
of its parts." 

Example 4.13. To illustrate a more general kind of reconstruction family, let a 
structure system be given with three elements, each containing two of three variables v I, 
V z, V 3' Let v I and V z each take states from the set {O, I} and let V3 take states from the set 
{O, 1, 2}. The elements are memoryless and probabilistic behavior systems whose 
behavior functions If, zf, 3fare given in Table 4.6. Let symbols defined in Table 4.7 be 
used for the unknown probabilities of states of the overall system. 

Leaving the formulation of the equations that characterize the reconstruction 
family and the determination of their solution within the constraints Pi 2 0 (i E No, II) 

to the reader, let us only mention that the set of 16 original equations in 12 unknowns 
reduces to ten linearly independent equations with two degrees of freedom. Assuming 
that the unknowns PIO and PII are chosen for the two degrees offreedom, we obtain the 
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TABLE 4.6 
Elements of the Structure System in Example 4.13 

VI V2 Ifee) 

Ie = 0 0 0.25 
0 1 0.18 

0 0.20 
1 0.37 

following inequalities: 

V2 V3 2fee) 

2e = 0 0 0.17 
0 1 0.16 
0 2 0.12 
1 0 0.14 

1 0.18 
2 0.23 

0.06 :s; PiO :s; 0.18, 

0.05 :s; Pll :s; 0.17, 

0.23 :s; PiO + Pll :s; 0.34. 

VI 

3e = 0 
0 
0 

217 

V3 3fee) 

0 0.11 
1 0.14 
2 0.18 
0 0.20 
1 0.20 
2 0.17 

The range of acceptable values of Pi 0 and Pii' expressed by these inequalities, is 
illustrated in Figure 4.14; it is a convex set characterized by four extreme points: (0.06, 
0.17), (0.17,0.17), (0.18,0.16), (0.18,0.05). Given any pair of values OfpiO and Pll within 
this range, values of all the remaining unknowns are uniquely determined as follows: 

Po = 0.34-PiO-Pii 

Pi = -0.04+ PiO 

P2 = -0.05+Pll 

TABLE 4.7 
Symbols Used in Example 4.13 

VI V2 V3 f(e) 

e=O 0 0 f(OOO) = Po 
0 0 1 f(OOI) = PI 
0 0 2 f(002) = P2 
0 0 f(010) = P3 
0 1 1 f(Ol1) = P4 
0 1 2 f(012) = Ps 
1 0 0 f(I00) = P6 

0 1 f(101) = P7 
0 2 f(102) = Ps 
1 0 f(110) = P9 

1 f(111) = PIO 
2 f(112) = Pll 



www.manaraa.com

218 CHAPTER 4: STRUCTURE SYSTEMS 
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Figure 4.14. A characterization of the reconstruction family in Example 4.13. 

P3 = -0.23+PlO+Pll 

P4 = 0.18 - PlO 

Ps = 0.23 - Pll 

P6 = -O.l7+PlO+Pll 

P7 = 0.20-PlO 

Ps = 0.17-Pll 

P9 = 0.37-PlO-Pll 

~ Example 4.14. Consider a structure system whose elements are possibilistic 
behavior systems based on the same sets of variables as the structure system in 
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TABLE 4.8 
Elements of the Structure System in Example 4.14 

VI V2 liCe) V2 V3 2lee) 

e=O 0 0.8 2e = 0 0 0.8 

0 1 0.5 0 1 0.9 

0 0.9 0 0.8 

0.8 0.6 

Example 4.12. Behavior functions of the elements are defined in Table 4.8. As we can 
see, they are not normalized. 

To characterize the reconstruction family of this structure system, let us use again 
the symbols introduced in Table 4.4. Then, the reconstruction family is specified by the 
inequalities Pi ;;::: 0 (i E No, 7) and the following eight equations of the form (4.29): 

max (P2, P3) = 0.5 (1), max (Po, P4) = 0.8 (5), 

max (P3, P7) = 0.6 (2), max (P2' P6) = 0.8 (6), 

max (Po, pd = 0.8 (3), max (P4, Ps) = 0.9 (7), 

max (P6' P7) = 0.8 (4), max (Pl, Ps) = 0.9 (8). 

Due to (1), neither P2 nor P3 can be larger than 0.5; hence, it follows from (6) that 
P6 = 0.8 and from (2) that P7 = 0.6. Due to (5), P4 cannot be larger than 0.8; hence, it 
follows from (7) that Ps = 0.9. Employing these results, the set of equations can now be 
reduced into two independent subsets of equations, 

and 
max (Po, pd = 0.8, 

max (Po, P4) = 0.8. 

The single equation, subject to the constraints P2 ;;::: 0 and P3 ;;::: 0, has the solution 

either P2 = 0.5 and 0 ~ P3 ~ 0.5, 

or P3 = 0.5 and 0 ~ P2 ~ 0.5. 

The pair of equations, subject to constraints Po ;;::: 0, Pl ;;::: 0, and P4 ;;::: 0, has the 
solution 

either Po = 0.8 and both 0 ~ Pl ~ 0.8 and 0 ~ P4 ~ 0.8, 

or Pl = P4 = 0.8 and 0 ~ Po ~ 0.8. 
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TABLE 4.9 
Maximum and Minimal Possibility Distributions of the Reconstruction 

Family in Example 4.14 

VI V2 V3 f SF fSF,! f SF,2 f SF,3 f SF,4 

C=o 0 0 0.8 0.8 0.8 0 0 
0 0 0.8 0 0 0.8 0.8 
0 0 0.5 0.5 0 0.5 0 
0 1 1 0,5 0 0.5 0 0.5 

0 0 0.8 0 0 0.8 0.8 
0 0.9 0.9 0.9 0.9 0.9 

0 0.8 0.8 0.8 0.8 0.8 
0.6 0.6 0.6 0.6 0.6 

One maximum and four minimal possibility distributions are readily recognized in this 
reconstruction family. They are specified in Table 4.9, where symbols f SF and fSF,j 

(i E N 4) denote the maximum and minimal distributions, respectively, and SF identifies 
the structure system under consideration. The reconstruction family consists of these 
four distributions as well as all distributions that are between the maximum and any of 
the four minima. 

It is known for possibilistic structure systems in general that their reconstruction 
families have always the form illustrated by Example 4.14. That is, the reconstruction 
family always contains one maximum solution (assuming the given structure system is 
consistent) and the set of solutions consists of all possibility distributions that are 
between this maximum and one or several minimal solutions. Moreover, the possibility 
degree of each overall state of the variables involved in any of the minimal solutions is 
either the same as the possibility degree in the maximum solution or it is equal to zero. 
This result as well as many additional results regarding the problem of determining the 
reconstruction family of a given structure behavior system have recently been obtained 
for both possibilistic and probabilistic systems. Since their full presentation is beyond 
the scope of this book, a brief survey of the most significant of them is given in Note 4.4. 

IDENTIFIABILITY QUOTIENT 

It is often desirable to have a suitable measure of the size of the reconstruction 
family. If adequate, such a measure can be used for measuring the uncertainty 
associated with the reconstruction of the overall system from the given structure system 
as well as the degree of identifiability of the actual overall system. 

For possibilistic systems, the size of the reconstruction family can adequately be 
expressed by the product 

TI [1 +jSF(C)] , (4.30) 
CEA 



www.manaraa.com

SEC. 4.6: IDENTIFICATION PROBLEM 221 

where f SF denotes the maximum element of the reconstruction family ff SF and A stands 
for the set of all overall states for which the possibility degree in the reconstruction 
family is ambiguous [i.e., the set of all overall states for which the solution to the 
constrained set of equations ofthe form (4.29) is not unique]. Observe that this product 
is always greater than or equal to 1 and its value is proportional to the size of the set A 
and values f SF (e); it is equal to 1 only if A is empty (i.e., if the solution is unique). 

If the product (4.30) is accepted as a reasonable measure of the size of the 
reconstruction family, then it is natural to define the reconstruction uncertainty USF 

associated with structure system SF as the logarithm of the product, i.e., 

USF = logz TI [1 + f SF (e)] = L logz [1 + f SF (e)]. (4.31) 
CEA CEA 

Clearly, 

0:::;; USF:::;; ICI, 

which means that ICI is the reconstruction uncertainty of the whole set ~SF of overall 
systems comparable with SF. The measure 

Ie! -USF U SF 
ISF = Ie! = 1-TCT, (4.32) 

referred to as the identifiability quotient, may be then used as a reasonable indication 
of the ability to identify a unique overall system from a given structure system SF. 
Clearly, 

ISF = 1 only if Iff SF I = 1; ISF = 0 only if IAI = ICI andfsF (e) = 1 for all eEe. 
The identifiability quotient is useful in some systems problems, most notably in 

comparative studies of competing structure systems. In general, it is much easier to 
determine the identifiability quotient of a structure system than its reconstruction 
family: it suffices to determine the maximum solution and the states with unique 
solutions (i.e., C - A). 

Example 4.15. To determine the identifiability quotient of the structure system 
specified in Example 4.14, we observe that I C I = 8 and the set A consists of the first five 
states as listed in Table 4.9. Using the values ofjSF(e) for these states, we obtain the 
reconstruction uncertainty 

USF = 310gz 1.8 + 210gz 1.5 = 3.714. 

Hence, 

I SF = 1- 3.714/8 = 0.536. ~ 
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UNIQUE SELECTION FROM RECONSTRUCTION FAMILY 

Let us discuss now the second subproblem of the identification problem-the 
problem of selecting, if necessary, one overall system from the reconstruction family as 
an hypothesis of the actual overall system. The problem is trivial when the reconstruc
tion is unique (i.e., when I SF = 1). In other cases (assuming the given structure system SF 
is consistent and, consequently, fFSF =1= 0), the choice is totally arbitrary, unless we 
adopt some criteria of goodness and require that a system be chosen from the 
reconstruction family that satisfies best these criteria. In the latter case, the selection 
problem becomes an optimization problem followed by an arbitrary selection from 
among the best systems. If the optimization criteria employed guarantee a unique 
optimum, all arbitrariness is eliminated from this problem. 

The optimization criteria are always used for some underlying purpose and, as 
such, must be derived from it. From the epistemological point of view, the most 
significant purpose is to select an overall system that is maximally noncommittal with 
respect to all matters except the projection requirement (4.27). This purpose can also be 
stated, more specifically, as follows: given a structure system, select an overall system 
from its reconstruction family that is based on all, but no more information than is 
contained in the structure system. It is proper to call such an overall system an unbiased 
reconstruction-it is a system that is reconstructed from the structure system without 
any bias, i.e., by employing all information available while, at the same time, refraining 
from the use of any additional (unsupported or biased) "information." 

The purpose of selecting the unbiased reconstruction is basically the purpose of 
inductive inference. It can be formulated in terms of the following general optimization 
problem. 

Given a structure behavior system SF, determine the behavior functionf SF, within 
the set offunctions of the reconstruction family 1FsF' for which the uncertainty measure 
(Shannon entropy for probabilistic systems, U-uncertainty for possibilistic systems) 
reaches its maximum subject to the projection constraints (4.27). 

For probabilistic systems, this optimization problem is well known in the literature 
under the name "the principle of maximum entropy." It has been justified as a rational 
principle of inductive inference by several diverse arguments, which are outlined in 
Note 4.6. 

It is well known that the unbiased reconstruction is unique for both probabilistic 
and possibilistic systems. It represents the weakest possible constraint among the 
variables involved that conforms to the given structure system. For possibilistic systems, 
(SF is the maximum distribution in the reconstruction family FSF or, in other words, it is 
a distribution that represents, within the distributions in FsF' the largest fuzzy subset of 
the set of all overall states of the variables involved. 

Although the unbiased reconstruction is epistemologically the most significant, as 
it is clearly based on a unique and well-justified principle of inductive inference 
(Note 4.6), other reconstructions may be preferable for alternative purposes. An 
example of an important purpose, one of a rather practical nature, is to select an overall 
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system for which the largest possible error is minimized. The term "error" is used here in 
the sense of a distance between the distributions (probabilistic or possibilistic) of the 
reconstructed overall system and the actual one. A reconstruction of this sort may be 
well characterized as a least risk reconstruction. A specific formulation of the resulting 
optimization problem depends on the kind of distance employed. Among the many 
possible kinds of distances, those which measure the loss of information are of special 
significance. They are discussed later in this chapter, particularly in Sections 4.7 and 4.9. 

JOIN PROCEDURES 

One of the main results associated with the identification problem is that the 
unbiased reconstruction can be determined by a computationally simple procedure, 
without actually solving the optimization problem formulated previously (to maximize 
the Shannon entropy or V-uncertainty within given constraints). The procedure, referred 
to as the join procedure, is based on the probabilistic or possibilistic version of a join 
operation by which behavior functions characterizing elements of the given structure 
system are combined in a rather straightforward manner. 

~ Consider two behavior functions 

if: A x B~ [0,1], 

2f: B x C ~ [0,1], 

defined on state sets A, B, C, whose meaning is explained later. Observe that the set B is 
involved in both of the functions. The join of if and 2f, denoted by if * 2f, is a function 

whose properties depend on the nature of the functions lfand 2f If they are probability 
distribution functions, then 

(4.33) 

where 2f (c I b) denotes the conditional probability of c given b; if they are possibility 
distribution functions, then 

(4.34) 

Observe that no conditional possibilities are used in (3.34), in analogy with (3.33). This is 
due to the property 

min ef(a, b), 2f(c I b)] = min [if (a, b), 2f(b, c)], 

which can easily be proven. 
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Assume that the join operation is applied to two elements of a structure system 
with sampling variables in sets IS and 2S, and behavior functions If and 2J, respectively. 
Then, the domains of the functions If and 2j must be converted into the forms A x B 
and B x C, respectively, where 

• A is the set of aggregate states of variables that participate only in the first 
element, i.e., variables in the set IS - e S n 2S); 

• B is the set of aggregate states of variables that participate in both of the 
elements, i.e., variables in IS n 2S; 

• C is the set of aggregate states of variables that participate only in the second 
element, i.e., variables in 2 S - C S n 2 S). 

To determine the unbiased reconstruction for a given structure system, the join 
operation must be applied repeatedly to pairs of its elements. In each of its applications, 
two elements merge (join) into a larger element of a new structure system. Assume that 
the join operation is always performed in such order that the result of previously applied 
join operations enters as the second element, i.e., in terms of the function 2f in Eq. (4.33) 
or (4.34). The procedure terminates when all elements merge into one ov.erall system. 

Let the outlined procedure be called a basic join procedure. Before formalizing it, 
two degenerate cases of the join operation must be considered to capture all meaningful 
situations. In the first case, all of the variables in the first element (associated with If) 
may be included in the second element (associated with 2f). This can occur since, in 
general, the second element is a result of some join operations performed previously. In 
this case, set A is empty and If assumes a degenerate form 

If: B -+ [0, 1]. 

In the second case, the elements are not coupled. This means that set B is empty and the 
behavior functions assume degenerate forms 

If: A -+ [0, 1], 

2f: C -+ [0, 1]. 

Observe that due to the irredundancy requirement for structure systems (Section 4.3) 
and the convention that the result of previously performed join operations is always 
used as 2J, set C cannot be empty. 

For probabilistic systems, the two degenerate join operations are defined by 

(4.35) 

when A = 0, and 

(4.36) 
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when B = 0; for possibilistic systems, they are defined by 

respectively. 

ef*2jJ (b, c) = min [1f(b), 2f(b,c)], 

[1f* 2jJ (a, c) = min [ff(a), 2f(c)J, 

225 

(4.37) 

(4.38) 

Assuming that the symbol 1f * 2f stands for either the regular join operation or one 
of its degenerate forms (depending on the context), the basic join procedure can be 
formalized in terms of the following algorithm. 

Basic Join Procedure. Given a locally consistent structure behavior system SF 
(probabilistic or possibilistic) with behavior functions xf (x E N q), to determine the join 
ofxffor all XENq: 

1. Let k = 2 and f = 1f; 
2. make proper adjustments to the arguments of "f and f and perform the 

appropriate version of the join operation "f * f -+ f (probabilistic or possibilistic, 
regular or degenerate); 

3. if k < q, make k+ 1-+ k and go to (2); 
4. stop. 

The following proposition can be proven (Appendix C): if the basic join procedure 
is applied to a consistent possibilistic structure system SF, then it always results in the 
unbiased reconstruction f SF (the maximum possibility distribution in the reconstruction 
family ~F)' If, however, the procedure is applied to probabilistic systems, it results in 
the unbiased (maximum entropy) reconstruction only for structure systems of a specific 
ty~the so-called loopless structure systems, introduced in Section 4.7. Whether or not 
the result f of the basic join procedure represents the unbiased reconstruction can be 
determined directly from the result itself, however, without resorting to the identifi
cation of the type of the given structure system. Iff satisfies the projections 

for all x E N q' then it is the unbiased reconstruction; otherwise, f does not conform to 
the given structure system and must be adjusted by the following iterative join 
procedure. 

Iterative Join Procedure. Given a locally consistent structure behavior system SF 
with probabilistic behavior functions l' (j E No. q _ 1), the result f of the basic join 
procedure applied to SF, and a number A E [0, 1J, to determine the behavior function 
f SF of the unbiased (maximum entropy) reconstruction with precision at least equal 
to A: 

1. Let j = 0, j = 1, and fo = f; 
2. make proper adjustments to the arguments of 1'andh-1 and perform the join 

operation 1'*h-1 -+ h of the degenerate form (4.35); 
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3. if i =1= 0 (modulo q), make i + 1 -+ i, j + 1 (modulo q) -+ j, and go to (2); 
4. if II; (c) -I; _q (c) I > A for some c E C, make i + 1 -+ i,j + 1 (modulo q) -+ j, and 

go to (2); 
5. stop. 

If LeI; (c) = 1 after the iterative join procedure is executed, then 

TABLE 4.10 
Sequence of Behavior Functions Obtained by the Basic and Iterative Join Procedures in 

Example 4.16 

Basic join 
procedure Iterative join procedure 

VI V2 V3 2j.lj 3j·ej·lf) i = 1 i = 2 i = 3 i=4 i = 5 

0 0 0 0.26 0.312195 0.294647 0.302908 0.309934 0.304982 0.307696 
0 0 1 0.13 0.111628 0.105353 0.099904 0.096561 0.095018 0.093371 
0 1 0 0.075 0.087805 0.095379 0.088024 0.090066 0.092059 0.089834 
0 1 1 0.225 0.188372 0.204621 0.210484 0.203439 0.207941 0.209672 
1 0 0 0.13 0.084211 0.094444 0.097092 0.089019 0.091490 0.092304 

0 1 0.06 0.094118 0.105556 0.100096 0.105580 0.108510 0.106629 
1 0 0.Q25 0.015789 0.012977 0.011976 0.010981 0.010418 0.010166 
1 1 0.Q75 0.105882 0.087023 0.089516 0.094420 0.089582 0.090328 

i=6 i = 7 i = 8 i=9 i = 10 i = 11 i = 12 i = 13 

0.309608 0.308036 0.308915 0.309511 0.309002 0.309289 0.309481 0.309315 
0.092433 0.091964 0.091444 0.091148 0.090998 0.090829 0.090734 0.090685 
0.090392 0.091011 0.090314 0.090489 0.090688 0.090462 0.090519 0.090584 
0.207567 0.208989 0.209528 0.208852 0.209312 0.209486 0.209266 0.209416 
0.090079 0.090826 0.091085 0.090388 0.090626 0.090711 0.090486 0.090563 
0.108277 0.109174 0.108556 0.109086 0.109374 0.109171 0.109343 0.109437 
0.009921 0.009761 0.009686 0.009612 0.009561 0.009538 0.009514 0.009498 
0.091723 0.090239 0.090472 0.090914 0.090439 0.090514 0.090657 0.090502 

i = 14 i = 15 i = 16 i = 17 i = 18 i = 19 i = 20 i = 21 

0.309409 0.309472 0.309417 0.309448 0.309469 0.309451 0.309461 0.309468 
0.090630 0.090599 0.090583 0.090565 0.090555 0.090549 0.090543 0.090540 
0.090510 0.090528 0.090550 0.090525 0.090531 0.090538 0.090530 0.090532 
0.209473 0.209401 0.209450 0.209469 0.209445 0.209462 0.209468 0.209460 
0.090591 0.090518 0.090543 0.090552 0.090528 0.090536 0.090539 0.090531 
0.109370 0.109427 0.109457 0.109435 0.109454 0.109464 0.109457 0.109463 
0.009490 0.009482 0.009477 0.009476 0.009472 0.009470 0.009470 0.009469 
0.090527 0.090573 0.090523 0.090531 0.090546 0.090530 0.090532 0.090537 
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TABLE 4.11 
Convergence Test in Step (4) of the Iterative Join Procedure in Example 4.16 

IJi(c)-.h-q(c)l, i = 0 (mod q) 

VI V2 V3 i= 3 i=6 i=9 i = 12 i = 15 i = 18 i = 21 

0 0 0 0.002261 0.000326 0.000097 0.000030 0.000009 0.000003 0.000001 
0 0 1 0.015067 0.004128 0.001285 0.000414 0.000135 0.000044 0.000015 
0 1 0 0.002261 0.000326 0.000097 0.000030 0.000009 0.000003 0.000001 
0 1 1 0.015067 0.004128 0.001285 0.000414 0.000135 0.000044 0.000015 
1 0 0 0.004808 0.001060 0.000309 0.000098 0.000032 0.000010 0.000003 
1 0 1 0.011462 0.002697 0.000809 0.000257 0.000084 0.000027 0.000009 
1 1 0 0.004808 0.001060 0.000309 0.000098 0.000032 0.000010 0.000003 
1 1 1 0.011462 0.002697 0.000809 0.000257 0.000084 0.000027 0.000009 

for each C E C; otherwise, the given structure system SF is globally inconsistent 
(Section 4.11) and no reconstruction of SF exists, i.e., fF SF = 0 and, consequently, SF is 
meaningless. 

Example 4.16. Consider the structure system discussed in Example 4.11 and 
defined in Table 4.3. To determine the unbiased reconstruction, we apply the 
probabilistic version of the basic join procedure first. The intermediate result 2f * If and 
the final resultf = 3f* ef* If) are shown in the initial part of Table 4.10. We can easily 
see that the final resultf does not conform to the given structure system. For example, 

[f l {VI' v2 }] (00) = 0.312195 + 0.111628 = 0.423823 

is not equal to If(OO) = 0.4 so that the projection requirement (4.27) is violated 
Hence, the iterative join procedure must be used. Let .1 = 0.00002. A sequence of 
behavior functions is generated by the procedure that converges to the unbiased 
reconstruction. This sequence is shown for i = 1,2, ... , 21 in Table 4.10. Numbers 
associated with the convergence test in step (3) of the procedure are listed in Table 4.11. 
Hence, if.1 > 0.015067, the procedure would stop for i = 3; if.1 > 0.004128, it would 
stop for i = 6, etc. Since .1 = 0.00002, the procedure stops for i = 21. .... 

4.7. RECONSTRUCTION PROBLEM 

The division of the perceived universe into parts and wholes is convenient and may be 
necessary, but no necessity determines how it shall be done. 

-GREGORY BATESON 

The reconstruction problem can be stated as follows: given a behavior system, 
viewed as an overall system, determine which sets of its subsystems, each viewed as a 
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reconstruction hypothesis, are adequate for reconstructing the given system with an 
acceptable degree of approximation, solely from the information contained in the 
subsystems. 

First, we observe that, according to this problem statement, the term "reconstruct" 
has a specific meaning: to reconstruct by using all, but no more information than is 
contained in the subsystems involved. This means that the reconstruction is required to 
be unbiased in the sense discussed in Section 4.6 and, consequently, the appropriate 
join procedures can be used for this purpose. 

In the identification problem, the unbiased reconstruction represents a well 
justified hypothesis (estimate) of the unknown overall system derived solely from a 
given structure system. Since the actual overall system is not known, it is not possible to 
determine the closeness between it and the hypothetical system. In the reconstruction 
problem, the unbiased reconstruction characterizes the reconstruction capability of the 
considered reconstruction hypothesis with respect to the given overall system. The 
closer the unbiased reconstruction is to the actual (given) system, the better the 
reconstruction hypothesis is. 

In general, the closeness between two comparable behavior systems may be 
expressed in terms of an appropriate distance measure defined for behavior functions. 
There are many possible types of distance measures. For example, the Minkowski class 

of distances is defined by the formula 

(4.39) 

wheref,fh denote behavior functions of the given system and the unbiased reconstruc
tion from a reconstruction hypothesis h, respectively, and pE N is a parameter whose 
values characterize the individual types of distances. We obtain, for instance, the 
Hamming distance for p = 1, Euclidean distance for p = 2, and upper bound distance 
for p = 00. 

Distances in the Minkowski class are based on point-wise differences 

of probabilities or possibilities, aggregated in the various ways expressed by the general 
formula (4.39). Although this point-wise characterization ofthe closeness betweenf and 
fh may be useful for some purposes, it is not well justified theoretically. A better 
grounded way of viewing the closeness is to express it in terms of the difference between 
the information that h contains about f or, in other words, in terms of the loss of 

information that takes place when f is replaced with h (a set of projections of f). 
Let us call a measure of this loss of information an information distance and denote 

it by D(f,fh). For probabilistic systems, it is expressed by the well-known formula 

(4.40) 
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where the constant 1/log21 C I is used as a normalizing factor to get the property 

Since fh(C) = 0 implies f(c) = 0, the probabilistic information distance is always 
defined. Observe, however, that it is not a metric distance, due to its fundamental 
asymmetry; moreover, D(fh,f) may not even be defined for some instances offand 
r[whenfh(c) > 0 andf(c) = 0 for some cECl 

When the information distance is applied to generative behavior systems, 
Eq. (4.40) becomes 

(4.41 ) 

The modifications of Eqs. (4.40) and (4.41) for directed behavior systems are obvious. 
~ For possibilistic systems, the information distance is expressed by the formula 

1 

h 1 f Ic(fh, 1)1 
D (f,f ) = log21 CI log2 Ic (f, I) I dl, (4.42) 

o 

which is the V-uncertainty analog of the probabilistic information distance (4.40) ..... 
The use of the information distances for comparing reconstruction hypotheses is 

described later in this section, after relevant properties of reconstruction hypotheses are 
sufficiently characterized. 

A reconstruction hypothesis of a given overall behavior system is a set of its 
subsystems. If the overall system consists of n variables, then the number of its 
subsystems that contain at least one variable is 2" - 1 and the total number of sets of 
these subsystems that contain at least one subsystem is 

22"-1- 1. 

This number, whose growth is extremely rapid with n, can be considerably reduced, 
without any loss of generality, by restricting to irredundant sets of subsystems (Section 
4.3). 

Another way of reducing the number of reconstruction hypotheses, which is 
desirable in most cases of systems investigations, is to exclude those sets of subsystems 
that do not contain all variables of the overall system. This requirement, usually referred 
to as the covering requirement, can be formally stated as 
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where kS denote the sets of variables in the subsystems of a reconstruction hypothesis 
and S denotes the set of variables in the overall system. It is primarily motivated by the 
necessity to include information about each variable of the overall system in the 
reconstruction hypothesis to make the reconstruction logically possible. Since the issue 
of including or excluding sampling variables in the overall system is resolved by the 
mask analysis (Section 3.6), no generality is lost by the covering requirement. 

Let the term "reconstruction hypothesis" be used from now on only for sets of 
subsystems of a given overall system that satisfy both the irredundancy and covering 
requirements. Reconstruction hypotheses are thus structure behavior systems that are 
comparable with the overall behavior system. For some purposes, however, it is 
desirable to deal with all sets of subsystems that satisfy only the irredundancy 
requirement. Let such sets of subsystems be called generalized reconstruction hypo
theses. Given an overall behavior system, the set of its reconstruction hypotheses is 
clearly a subset of its generalized reconstruction hypotheses. 

Each reconstruction hypothesis (as well as any generalized reconstruction 
hypothesis) is fully characterized by two properties: (i) a family of subsets of the 
variables involved, and (ii) behavior functions associated with the individual subsets of 
variables. When property (ii) is disregarded, property (i) becomes an invariant ofa class 
of reconstruction hypotheses that differ from each other solely in the behavior functions 
of their elements. Let this invariant be called a structure to distinguish it from the 
individual reconstruction hypotheses in the class, each of which is a particular structure 
system. Structures are thus properties of structure systems that are invariant with 
respect to changes in behavior functions of their elements. 

Given a set of variables, say set S, the set of structures that represents all 
reconstruction hypotheses of any overall system defined in terms of S consists of 
families of subsets of S that satisfy the irredundancy and covering requirements. For 
convenience, let us represent all sets of variables with the same cardinality, say n, by a 
common set of structures, say set <§., defined in terms of the set N. of positive integers. 
Formally, for each nE N, 

<§. = {G;lG j c fJJ(N.),G j satisfies the irredundancy and covering 
requirements} . 

Symbols Gj are used in this formal definition to indicate that elements of <§. are the most 
general structures involved in the reconstruction problem (several special types of 
structures are introduced later for various purposes); subscript i is an identifier of the 
individual structures in <§. and, normally, i E N I'§.r Set <§. is trivially interpretable in 
terms ofany set of variables S such that lSI = n by any assignment (one-to-one) of the 
variables in S to the integers in N n• For convenience, let structures in sets <§. be called 
G-structures. 

For some purposes, it is convenient to extend the set <§. to the set <§.+ of all 
generalized reconstruction hypotheses. Formally, for each nE N, 

<§.+ = {G;lG j c £I> (N.), Gj satisfies the irredundancy requirement}. 
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Although the main focus in the rest of this Chapter is on sets ~1I' all results relevant to ~1I 
can easily be generalized to sets ~1I+' 

When the set ~1I for some particular n is given a specific interpretation in the 
context of an overall behavior system with n variables, the structures in ~1I become 
unique representations of the reconstruction hypotheses associated with the overaJl 
system. This follows immediately from the fact that behavior functions associated with 
any subsets of the variables become uniquely defined as appropriate projections of the 
overall behavior function. Reconstruction hypotheses can thus be studied in their 
abstracted forms of structures. Given a structure in ~1I' it becomes a specific 
reconstruction hypothesis when interpreted in the context of a particular overaJl 
behavior system comparable with it (based on n variables). 

The main issue in the reconstruction problem is to develop computationally 
efficient procedures that will allow consideration, evaluation, and comparison of 
reconstruction hypotheses represented by all structures of a given set of variables. Since 
the number of structures grows rapidly, as shown later in this section, this is a difficult 
task. To pursue it successfully, it is essential to utilize appropriate ordering and 
classification of structures. 

First, let us define a natural ordering of structures, referred to as a refinement 
ordering. Given two structures Gi , GjE ~1I' let Gi be called a refinement of Gj (or, 
alternatively, let Gj be called a coarsening of Gi ) if and only iffor each x E Gi there is some 
YEGj such that x £; Y; let Gi :5; Gj denote that Gi is a refinement of Gj • 

Consider two structures Gi , GjE ~1I such that Gi :5; Gj • Then, Gi is caJled an 
immediate refinement of G j (or, alternatively, G j is called an immediate coarsening of G J if 
and only if there is no Gk E ~n such that Gi :5; Gk and Gk :5; Gj • Given a particular 
structure GiE ~"' we define its structure neighborhood as the set of all its immediate 
refinements and immediate coarsenings in ~". 

It is easy to see that the refinement relation is a partial ordering. Furthermore, the 
pair (~II' :5;) is a lattice. This can be demonstrated by the following facts: (i) there exists a 
universal upper bound-set {N"}; (ii) there exists a universal lower bound-set 
{{X}IXEN"}; (iii) for each pair Gi , GjE~", the greatest common refinement is the 
irredundant counterpart of the set {x f"'\ ylx E Gi , YEG j }; (iv) for each pair Gi , GjE G", 
the least common coarsening is the irredundant counterpart of the set Gi U Gj • Let us 
refer to these lattices as the refinement lattices of G-structures (one for each nE N). 
Observe that the refinement ordering can readily be applied to sets ~"+ and forms 
lattices (~"+ , :5;). 

It is obvious that a refinement lattice or any desirable part of it can be generated by 
a repeated application of a procedure through which all immediate refinements are 
generated for any given structure in the lattice. One possible procedure of this sort is 
defined as follows. 

Refinement Procedure for G-Structures (or RG-procedure). Given a G-structure 
Gi = {kSlkENq} E ~"' to determine all its immediate refinements: 

1. Let k = 0; 
2. if k < q, make k + 1 -+ k; else, go to (5); 
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3. if I"SI ~ 2, make (Gj-eS}) uX ~R, where X = {xix c "S,lxl = IkSI-I}; 
else, go to (2); 

4. make R ~ Q, where Q is the irredundant counterpart of R, record Q as an 
immediate refinement of Gj, and go to (2); 

5. stop. 

Observe that the condition IkSI ~ 2 in step (3) guarantees that the generated 
structures satisfy the covering requirement; replacing it with condition IkSI ~ 1 would 
allow us to deal with sets t'§n+ of generalized reconstruction hypotheses. Step (4) 
guarantees that they satisfy the irredundancy requirement. The fact that the smallest 
possible change in G l is made in step (3}-only one element of Gj is excluded and 
replaced by immediately smaller elements (subsets}-is a guarantee that the generated 
structures are immediate refinements of Gj. 

Example 4.17. Given Gj = pS = {I, 2, 3}, 2S = {2, 3, 4}, 3 S = {I, 4}}, we can 
immediately see that IkSI ~ 2 for all keN3 and, consequently, the RG-procedure can 
operate on each of the three elements ofGj; hence, there are three immediate refinements 
ofGj. Set 1 S is replaced with the sets {t, 2}, {I, 3}, {2, 3}, butthe third one is a subset of 
2 S and is excluded in step (4); this results in the. immediate refinement 

{{I, 2}, {l, 3}, {2, 3, 4}, {l, 4}}. 

By a similar replacement of 2S, the second immediate refinement 

{{I, 2, 3}, {2, 4}, {3, 4}, {I, 4}} 

is obtained. Finally, set 3S is replaced with the sets {l} and {4}, both of which are 
redundant and excluded in step (4); hence, the third immediate refinement is 

{{I, 2, 3}, {2, 3, 4}}. 

To reduce the computational complexity involved in the generation of recon
struction hypotheses, it is useful to partition the refinement lattices into convenient 
equivalence classes at several computational levels. The equivalence classes can be then 
represented by appropriate canonical structures and refinement procedures developed 
to deal only with these canonical representations at the various computational levels. To 
illustrate this issue, let only two levels of computation be described, referred to as local 
and global. 

The local level of computation is represented by the RG-procedure just described. 
To develop a global level of computation, let us define functions 
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n E N, where g(n is the set of all symmetric and reflexive binary relations defined on the 
set N n (also called compatibility relations, tolerance relations, or undirected graphs with 
loops), and rn (GJ is the binary relation in which integers a and b (a, bEN n) are related if 
and only if they both belong to at least one of the subsets of N n included in Gi • Formally, 

rn(GJ = {(a,b)I(3xEGJ(aEx and bEX)}. 

Let us refer to elements of q(n as graphs. We should keep in mind, however, that all these 
graphs are undirected (symmetric) and with loops (reflexive). Some examples illustrat
ing functions r4 and r5 are shown in Figure 4.15. In depicting the graphs, we omit the 
obvious loops on the nodes. 

Functions rn are clearly onto and for n ~ 3 are also many-to-one. As such, they 
impose the following equivalence relation on the respective sets f'§ n of G-structures: 

for some particular n EN. If Gi = Gj , we say that structures Gi and Gj are r-equivalent. 
Let us use the standard symbol f'§n/rn to denote the set of equivalence classes imposed 
upon f'§n by rn· 

For each n E N n, the set q(n together with the subset relation (or, alternatively, the 
operations of set union and intersection) form a Boolean lattice. The obvious one-to
one correspondence between f'§ n/r nand g(n imposes then an isomorphic Boolean lattice 
on the set f'§n/rn. This isomorphism enables us to generate equivalence classes in f'§n/rn 

(a) 

(b) 

Figure 4.l5. Examples illustrating functions r n. 
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by appropriately operating on graphs in ~n. It is desirable, however, that each 
equivalence class in f§ n/r n be uniquely represented by some canonical structure. For that 
purpose, we introduce for each ne N the following subsets of f§n: 

• f(jn' consisting of those G-structures Gi in the set f§n which contain only and all 
maximal compatibility classes associated with the graph rn(Gi ) or, in another 
terminology, are based on cliques of the graph. Such structures are also known 
as complete covers in r n (G i). Let us denote structures in sets f(j n by C j and refer to 
them as C-structures. Structures G1 and G3 in Figure 4.15 are examples of 
C-structures. 

• 9 n' consisting of those G-structures G i in f§ n whose elements consist of the pairs 
ofintegers that are connected in the graph rn(G,) and the single integers that are 
isolated in the graph. Let structures in sets 9 n be called P-structures and 
denoted by Pt. Structure G4 in Figure 4.15 is an example of a P-structure. 

It follows immediately from these definitions and the fact that the set of all 
maximal compatibility classes in every undirected graph is unique that each equivalence 
class in f§n/rn contains exactly one C-structure from f(jn and one P-structure.from 9 n. 
C-structures and P-structures can thus be viewed as two canonical representations of the 
r-equivalence classes of G-structures. Each r-equivalence class, represented by a graph, is 
polarized by the two canonical structures: the C-structure and P-structure are the least 
refined and most refined structures in the equivalence class, respectively. The one-to-one 
correspondence between ~n and f(jn (or 9 n) imposes a Boolean lattice on f(jn (or 9/1) 
that is isomorphic with the natural Boolean lattice defined on ~n. 

As an example, Figure 4.16 illustrates the lattice (f§3,!5:) as well as the Boolean 
lattices (mutually isomorphic) defined on ~ 3, f(j 3, 9 3 , and f§ 3/r3. For describing larger 

lattices, it is useful to define an equivalence relation :k on the sets f§ n in the following 
way: 

(i.e., one of them can be obtained from the other solely by a permutation of the integers 

in Nn). Let ~ be referred to as i-equivalence and let f§nli denote the set of equivalence 
classes of isomorphic structures (or permutation equivalence classes) defined on f§/I. 

An example illustrating the meaning of the i-equivalence is shown in Figure 4.17, 
where the boldface symbols Gdk eNs) denote i-equivalence classes in f§ 3/i. 
Figure 4.17a describes the lattice (f§ 3 Ii, !5:). It is the same lattice as the one shown in 
Figure 4.16, but simplified in the sense that isomorphic structures are not distinguished. 
This is done by deleting labels of entries in the block diagrams and including only one 
block diagram for each permutation equivalence class. Structures in each of these 
classes can easily be determined by permuting integers 1,2, 3 along entries of the blocks. 
The simplified lattice shown in Figure 4.17a is a homomorphic image of the full lattice in 
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lW G, = c, 

1 
~ 

G2 = P, 

7~ 
G3 

Gs 

C2 
C4 

3 3 P4 
P2 P3 

1 2 GS OJ lcrt2 
C7 

° Cf3 3 3 P7 
P6 P7 

CflCflCfl 
1 2 3 

Ps 

Figure 4.16. Lattice (~3' ::;;) and Boolean lattices defined on ~3' CC3, &'3, and ~3 /r3 ' 

Figure 4.16. The homomorphic mapping, which is the basis for this simplification, is 
specified in Figure 4.17b. 

The more complicated lattice (<§4/i,~) is specified in Figure 4.18. Permutation 
equivalence classes of G-structures as well as C-structures and P-structures are again 
denoted by boldface symbols and grouped together in the r-equivalence classes. Each of 
the latter classes is associated with a graph Pk and the two canonical structures Ck and P k 

(k eN 1 d. To show more clearly the overall properties of this lattice, it is summarized in 
Figure 4.19, where the individual permutation equivalence classes of G-structures are 
denoted only by their identifiers and the r-equivalence classes are more emphasized. 

The lattice (~4/i, ~), which is a sublattice of (<§ 4/i, ~), is described in Figure 4.20. 
The number placed next to each block diagram indicates the number of different 
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c:;:;;J GI = CI 
~3 • ~3/i , 
GI • G, 

crJ G2 = PI 
G2 • G2 

G3~ 
G4 • G3 

G/ 
S 

G6~ 
~ G4 G7 • G4 

C? C3 G/ 
8 

Gg • GS 

(b) 

(a) 

Figure 4.17. Lattice (~3/i, ::5: ) and the homomorphic mapping ~3 ..... ~3/i. 

C-structures in the permutation equivalence class expressed by that block diagram; the 
number placed next to each arrow indicates the number of immediate refinements of 
each C-structure of one permutation class in the other class. As explained earlier, this 
lattice is isomorphic with the lattices defined on fYi4/i, r!J>4/i, and (<§4/i)/r. 

While the full lattices (<§ n' ~) represent the basis for the local level of computation 
in the reconstruction problem, the lattices (ct'n, ~) or their isomorphic counterparts are 
the basis for the global level of computation. To operate at the global computational 
level, a procedure is required by which all immediate refinements in the lattices (ct'n, ~) 
are generated for any given C-structure Ck E ct' n (n EN). One such procedure, which 
utilizes the graph representation of C-structures, is described as follows. 

Refinement Procedure for C-structures (or RC-Procedure). Given a C-structure 
Ck E ct'n and the corresponding graph rn(Cd, to determine all immediate refinements of 
Ck in the set ct'n: 
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C 1 = G1 

• • 

Figure 4.18. Lattice ('§4/i, ::S::) with the indication of r-equivalence classes and canonical 
C-structures and P-structures. 
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Figure 4.19. Summary of lattice (t'§4/i, ~ ) described fully in 
Figure 4.18. 

1. Exclude one edge from the graph r. (Cd, say edge (a, b); 
2. split each element x of Ck that contains both a and b into two elements, 

xQ = x - {b} and Xb = x - {a}, and replace x in Ck with XQ and X b ; 

3. exclude all xQ's and Xb'S generated in step (2) that are redundant and record the 
result as an immediate refinement of Ck in the lattice (~., :$); 

4. repeat steps (1)-(3) for all edges of the graph r. (Ck ) and, then, stop. 

The procedure is justified by the following facts: (i) there is a one-to-one 
correspondence between sets 9t. and ~. and, hence, each change in a graph is reflected 
by a change in the corresponding C-structure; (ii) the smaller the number of edges in a 
graph, the more refined the corresponding C-structure is; (iii) since no loop on a vertex 
may be excluded from a graph without violating the covering requirement for the 
corresponding C-structure, the smallest possible reduction of the graph is to exclude 
one of its edges. The number of edges in this graph indicates thus the number of 
immediate refinements of the corresponding C-structure. 

Example 4.18. Consider the graph PI and the corresponding C-structure C 1 

specified in Figure 4.21a. The graph has six edges and, hence, there are six immediate 
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6 

6 

3 

12 

3 3 

3 

Figure 4.20. Lattice ('Ii 4/ i, :5: ). 

refinements of the C-structure. They are shown in Figure 4.21b. The refinement C7 , for 
example, is derived by the RC-procedureas follows: (1) edge (4, 5)is excluded from P! so 
that graphp7 is obtained; (2) element {2, 4, 5} ofC! (the only element ofC! that contains 
both 4 and 5) is split into elements {2, 5} and {2, 4}; (3) since the element {2, 4} is the only 
redundant element {2,4} c {2, 3, 4}), it is excluded and the result C7 = { {I, 2}, {2,5}, 
{2, 3, 4} } is recorded as an immediate refinement of C! . 
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(a) 

~23 ~ ~3 ~ 2 

5 4 9, 5 4 

~ 
H 

V 
A 

~ 5 4 

P5 

?l 5 4 

P7 

(b) 

C5 

C7 

Figure 4.21. Illustration of the RC-procedure: (a) given graph and the corresponding 
C-structure; (b) immediate refinements of C l' 

Since elements of P-structures represent directly edges of the corresponding 
graphs, a refinement procedure for P-structures (or RP-procedure) is rather trivial. It 
consists of excluding individual edges from the given graph [as in step (1) of the 
RC-structure] and interpreting the results as P-structures. 

Procedures by which all immediate coarsenings are determined within a set of 
G-structures, C-structures, or P-structures are also useful, especially for the purpose of 
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determining the full structure neighborhood of a given structure, but we leave their 
formulations to the reader as an exercise (see also Note 4.10). Examples of structure 
neighborhoods are given for the three types of structures in Figures 4.22-4.24. The given 
structures are denoted in these examples by symbols G, C, and P, respectively. Their 
immediate refinements are distinguished by subscripts, their immediate coarsenings by 
superscripts. We can see in Figure 4.22 that the structure neighborhood of a given 
G-structure may include G-structures that are not in the same r-equivalent class as the 
given structure (structure G3 in the figure). In order to be restricted only to immediate 
refinements in the same r-equivalence class, the RG-procedure can be trivially modified 
by changing the requirement I k S I ~ 2 in step (3) into I k S I > 2. Then, indeed, no element 
of the given structure that contains only two integers would be allowed to change and, 
consequently, the graph of the given G-structure would remain intact. 

The notion of immediate refinements (or coarsenings) of structures of the various 
types can be employed for partitioning the corresponding set of structures into blocks 
of structures that are equivalent in their refinement level, i.e., are reached from the 
universal upper bound {N n} of the respective refinement lattice through sequences of 

1 

~P 
3 4 

STRUCTURE NEIGHBORHOOD 

OF G WITHIN 

,·EQUIVALENCE CLASS 

REPRESENTED BY 

GRAPH Pl 

tz1~ 
3 4 ~ 

Figure 4.22. Structure neighborhood of G-structure G. 
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~ 
234 

t:;:J 
1 

2 

Lj ~ 
3 4 3 4 4 

c, 

Figure 4.23. Structure neighborhood of C-structure C. 

immediate refinements of the same length. Let us call this equivalence a refinement level 
I 

equivalence or I-equivalence and denote it by ==. For instance, structures G1 , G2 , G3 in 
Figure 4.22 are I-equivalent G-structures in the set ~ 4; structures specified in Figure 
4.21 b are I-equivalent C-structures in the set ~ 5; structures PI, P 2, P 3, P 4 in Figure 4.24 
are I-equivalent P-structures in the set ~ 4' 

To get some feeling about the growth of the numbers of structures of the three 
types with n, as well as the numbers of their i-equivalence and I-equivalence classes, the 
known results for n :s; 7 are summarized in Table 4.12. It is clear that 

and, obviously, 

where the exponent n(n -1)/2 represents the total number of possible edges in graphs 
defined on Nn. Clearly, I~n/II = n(n -1)/2 + 1. The counting of I Bln/il for a given n is 
more complicated, but this combinational problem has been solved in graph theory 
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~m 
3 4 4 
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1 2 *=, 1 2 

" 
1 2 

" 
~ 2{ ~ 
3 4 3 4 3 4 

9, 
P, P, 

P2 P2 P3 P3 P4 P4 

Figure 4.24. Structure neighborhood of P-structure P. 

TABLE 4.12 
Numbers of G-Structures in C§: and C§., C-Structures, and their Isomorphic 

Equivalence Classes and Refinement Level Classes for n ::; 7 

n 2 3 4 5 6 7 

I'J: I 4 18 166 7,579 7,828,352 2,414,682,040,996 

I'J.I 2 9 114 6,894 7,785,062 2,414,627,396,434 

1't.1 2 8 64 1,024 32,768 2,097,152 

I'J: Iii 3 8 28 208 

1'J.1iI 2 5 20 180 

1't.1iI 2 4 11 34 156 1,044 

I'J: /II 3 7 15 31 63 127 

I'J./II 2 5 12 27 58 121 

I 't./II 2 4 7 11 16 22 
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(Note 4.11). The numbers given in Table 4.11 for I ~n+ I, I ~n+ Iii, I ~n+ Ill, I ~nl, I ~nlil, and 
I ~ nil I are known only for n :s; 7. 

Complete catalogs of lattices (~nli, :S;) as well as lattices (rcnli, :S;) for n = 3,4,5, 
which were determined exhaustively by the RG-procedure and an isomorphism test on 
a computer, are given in Appendix D. 

~ Structures of one additional type, mentioned previously, should be introduced. 
These are structures for which the iterative join procedure is not needed to determine 
the unbiased reconstruction when dealing with probabilistic systems. They are usually 
called loopless structures. 

Loopless structures of a special kind, which may be called strict loopless structures 
or L-structures, are of particular interest in the reconstruction problem. We say that a 
G-structure GiE ~n is also a L-structure ifand only if none of the pairs (a, b)EN~is both 
included in some elements of Gi and connected through several coupled elements. Let us 
denote the set of all L-structures for each n by If n' 

To define the set!l'n formally, assume that a G-structure Gi E ~n is given. For each 
pair (a,b)EN~, let 

Xa,b = {XlxEG i, {a, b} ex}. 

Then, Gi is a L-structure (G i E Ln) if and only if no pair (a, b) E N~ is an element of the 
transitive closure of rn(Gi - Xa,b)' 

For example, all structures in the set ~3 (Figure 4.16) are obviously L-structures 
except the structure G2 = { {1, 2}, {2,3}, {3, 1} }. In the set rc 4, there are only three 
structures that are not L-structures. They are in the same i-equivalence class, which may 
be represented, e.g., by the C-structure C = { {1, 2}, {2, 3}, {3, 4}, {4, 1} }. Indeed, the 
transitive closure of r4 (C - X 1,2) is N 4 and, hence, the pair (1,2) is an element of it. 

The significance of L-structures is that the iterative join procedure is not needed for 
them, independently of the order in which elements of the L-structure under 
consideration enter the join operations. Loopless structures that are not L-structures do 
not possess this convenient property. The iterative join procedure can be avoided for 
them only for some specific orders in which their elements are employed in the basic join 
procedure. This requires further tests, computationally quite involved, to determine at 
least one of the proper orders; the methodological significance of these structures is thus 
considerably reduced. ... 

Using the various concepts introduced in this section, the reconstruction problem 
can now be discussed in more specific terms. Given an overall system and a set of its 
reconstruction hypotheses specified by the user (based, e.g., on the set ~ no rc n' & n' or If n 
of structures), the reconstruction problem amounts to selecting a subset of reconstruc
tion hypotheses from the given set according to some requirements. Normally, it is 
required that (i) distances associated with the selected reconstruction hypotheses be as 
small as possible, and (ii) the hypotheses themselves be as refined as possible. Either of 
these requirements imposes an ordering on the set of reconstruction hypotheses 
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involved. The ordering based on requirement (ii) is fixed-it is the partial ordering of 
structure refinement with the lattice properties described previously. The ordering 
based on requirement (i), which may be appropriately called a distance ordering, is not 
fixed. It depends on the given overall system as well as the chosen kind of distance, and 
can be determined only by calculating the unbiased reconstructions and distances of the 
individual reconstruction hypotheses. 

Ifthe distance expressed by formula (4.40) for probabilistic systems [or formula 
(4.42) for possibilistic systems] is used, which measures the amount of information lost 
when the overall system is replaced by a reconstruction hypothesis, then there exists a 
specific distance preordering:* the information distance is monotonically nondecreasing 
with increasing refinement of reconstruction hypotheses. In addition, both versions of 
the information distance are additive along any path in the refinement lattice involved. 
This means that 

(4.43) 

for any three reconstruction hypothesis x, y, z of the same overall systems such that 
x ~ y ~ z. The properties of preordering and additivity are very useful in dealing 
with the reconstruction problem and give the information distance a special signifi
cance. In our further discussion of the reconstruction problem, we always assume 
the use of the relevant version of the information distance (i.e., probabilistic or 
possibilistic and basic or generative). 

When combined, the distance ordering and refinement ordering form a joint 
preference ordering associated with the reconstruction problem. The solution set in the 
reconstruction problem is then characterized in terms of this combined ordering as 
follows: it consists of such a subset of reconstruction hypotheses from the given set that 
contains no hypothesis inferior to any other hypothesis from the viewpoint of the 
combined ordering. The term "inferior" is used here in the usual sense: hi is inferior to h2 
if and only if either hi is less refined and its distance is not smaller than that of h2' or hi 
has a larger distance than h2 and, at the same time, it is not more refined than h2. Let 
elements of the solution set be called admissible reconstruction hypotheses. 

We can now observe a striking similarity of the reconstruction problem with two 
problems discussed previously, the problem of determining admissible behavior 
systems (Sections 3.4 and 3.6) and the problem of determining admissible simplifi
cations of a given behavior system (Section 3.9). When the uncertainty and complexity 
orderings in these problems are compared with the distance and refinement orderings in 
the reconstruction problem, respectively, the similarities among these three problems 
become obvious. We leave it to the reader to utilize these similarities and define the 
combined ordering and solution set for the reconstruction problem formally. 

We see that problems associated with climbing up the epistemological hierarchy as 

* The term "preordering" is not used here in the technical sense of a reflexive and transitive relation; it is, in 
fact, a partial ordering. 
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well as problems of systems simplification form a major problem category, which has 
the following general characterization: 

GIVEN: 

-a set X of considered (acceptable) systems; 
abc 

-a set of preference ordering relations ::S;;, ::s;;, ::s;;, ... , on X. 

SOLUTION SET: 

* * X. = {xeX/(VyeX)(y::S;; x =X::s;; y)}, 

* where ::s;; is a join preference ordering on X defined for all x, y e X as 

* x::S;;y 
abc 

iff x ~ y and x ~ y and x ~ y and .... 

Three sets of procedures are required in the process of solving the reconstruction 
problem: 

i. procedures through which all desirable reconstruction hypotheses can be 
generated; 

ii. procedures through which the generated reconstruction hypotheses can be 
evaluated and compared with respect to the objectives of the reconstruction 
problem; 

iii. procedures through which it can be decided, at relevant points in the solution 
process, which of the generated reconstruction hypotheses should be accepted 
as members of the solution set, which of them should be used as a basis for 
generating further reconstruction hypotheses, and whether the solution 
process should continue or terminate. 

The way in which these three sets of procedures are integrated in the overall 
solution process is shown schematically in Figure 4.25. The kernel of the process is the 
generation of all desirable reconstruction hypotheses. This can be done conveniently by 
generating relevant structures, which are then interpreted as reconstruction hypotheses 
in terms of the given overall system. The interpretation is made by assigning the 
variables of the overall system to the integers involved in the structures and calculating 
then the required projections of the overall behavior function. The generation of 
structures may be restricted in various ways to reduce computing time and the 
corresponding cost or, possibly, for some other reasons. For example, it may be 
restricted to a subset of all relevant G-structures. such as relevant C-structures or 
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Figure 4.25. General scheme of the solution process associated with the reconstruction problem. 

L-structures, or it may be restricted by considering only levels of refinement 
(I-equivalence classes) for which the loss of information does not exceed some 
acceptable value specified by the user. The generation of reconstruction hypotheses 
may be thus restricted either by constraining the set of structures considered or by 
committing to a special generation option. 

A multitude of generation options should be made available in the GSPS to allow 
flexibility in dealing with the reconstruction problem (Note 4.10), but this aspect is 
beyond architectural considerations. The essence of the various procedural options is to 
generate appropriate refinements (or coarsenings) of given reconstruction hypotheses, 
as exemplified by the RG-procedure and RC-procedure (and their coarsening 
counterparts). 

As mentioned previously, the generation of structures can be also organized at 
several computational levels. For example, the RC-procedure may be used at the global 
level to deal only with r-equivalence classes of G-structures. The RG-procedure 
modified by replacing the condition IkSI ~ 2 in step (3) by IkSI > 2 is then used at the 
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local level to generate immediate refinements in some significant r-equivalence classes 
determined at the global level. 

It is often necessary to generate refinements or coarsenings of several structures 
defined at the same level of refinement. In such cases, a procedure is needed by which the 
generation of duplicate structures is prevented. 

The input to the procedures for evaluating reconstruction hypotheses represented 
by the second block in Figure 4.25, consists of the generated reconstruction hypotheses 
and various evaluation options and criteria specified by the user. The latter include 
definitions of the desirable distance (as well as other required characteristics such as the 
identifiability quotient, reconstruction uncertainty, or confidence degree of some sort) 
and a principle upon which the reconstruction should be based (unbiased reconstruc
tion, min-max reconstruction, etc.). The information distance and unbiased reconstruc
tion, which are theoretically well justified, should normally be used as the default 
options. The received reconstruction hypotheses are evaluated in the required way and 
compared. When results relevant to user's interest are obtained, particularly those 
pertaining to the solution set, they are printed. 

The decision-making procedures, illustrated by the third block in Figure 4.25, use 
information regarding the evaluated reconstruction hypotheses and make various 
decisions, according to decision criteria specified by the user. The most fundamental 
decisions are whether to continue or terminate the solution process and, if the process 
continues, which of the considered reconstruction hypotheses should be used in the next 
stage (set X in Figure 4.25). 

Let us illustrate now the various issues of the reconstruction problem, as outlined 
in this section, by several examples. 

Example 4.19. Consider a possibilistic behavior system that was derived from 
data obtained by monitoring four variables defined on a computer complex. The 
objective is to find conditions under which the utilization of CPU (central processing 
unit) is high. The monitored variables represent the utilization of CPU and three 
communication channels, say channels Cl, C2, and C3. The monitoring was performed 
in the period of one hour of a typical workload and in each interval of 1 sec the 
utilization of each of the observed units was recorded. Hence, 3,600 observations were 
made. If it was observed during a particular interval of 1 sec that the utilization of a unit 
was smaller than a certain threshold defined by the investigator (and based on previous 
experimental studies), it was considered low (L); if it was higher than that threshold, it 
was considered high (H). 

The investigator decided to use the possibilistic and memoryless methodological 
options for deriving a behavior system from the data. Only six states of the 16 states 
defined for the variables were actually observed. Since they occurred in the data with 
approximately the same frequencies, the investigator decided to discriminate by the 
behavior function only between observed and unobserved states. He thus declared the 
observed states as the only possible states and assigned to each of them the possibility 
degree of 1; the remaining states (which were not observed) were then assigned the 
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TABLE 4.13 
Possibilistic Behavior Functions of the Overall System and Some Unbiased 

Reconstructions Discussed in Example 4.19 

CPU Cl C2 C3 f f1 =f4 =r f2 f3 r r=JB=r flO 

L L L L 1 
L L L H 1 0 1 
L L H L 0 0 0 0 0 0 
L L H H 0 0 1 1 1 0 1 
L H L L 0 0 0 1 0 0 0 
L H L H 0 0 0 0 1 0 0 
L H H L 0 0 0 0 0 1 0 
L H H H 1 1 1 1 1 1 
H L L L 0 0 1 0 1 
H L L H 0 0 0 0 0 
H L H L 
H L H H 1 1 1 1 
H H L L 1 1 1 1 1 1 1 
H H L H 0 0 0 0 0 1 0 
H H H L 0 0 0 0 1 0 0 
H H H H 0 0 0 0 0 0 

possibility degree of O. The result is the behavior function f specified in Table 4.13. It 
provides the investigator with an important insight: the utilization of CPU can be kept 
high by some changes in the computer organization under which the utilization of the 
three channels is mixed in one of the following three ways: 

Cl 
L 
H 
L 

C2 
H 
L 
H 

C3 
L 

L 
H 

To further enhance this insight, the investigator decided to explore the reconstruction 
properties of the overall behavior function! He was interested only in reconstruction 
hypotheses with no loss of information. 

The variables are obviously strongly constrained in this case (only 6 out of 16 states 
defined for the variables are possible). However, we can easily determine that 
projections off associated with any pair of the four variables (there are six such pairs) 
are totally unconstrained, i.e., the possibility degree is 1 for all four states defined for the 
respective pair of variables. Hence, the variables are pair-wise independent and the 
overall behavior function cannot be reconstructed solely from its two-dimensional 
projections. 

To determine whether f can be reconstructed from any projections at all, it is 
useful to consider reconstruction hypotheses based on C-structures first. Using the 
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RC- procedure, we obtain six reconstruction hypotheses at the first level of refinement. 
Their block diagrams and the associated graphs are specified in Figure 4.26a, each 
labeled by an integer at the left top corner of the respective box, and their unbiased 
reconstructionsJh (h E N 6) are given in Table 4.13. Hypotheses 1,4, and 6 reconstruct! 
exactly and are thus prospective candidates for the solution set. Each of the remaining 
hypotheses produces four incorrect states of the overall system. Their information 
distances, calculated by formula (4.42), are thus 

(lOg2 10 -log2 6)/log2 16 = (3.32 - 2.58)/4 = 0.185. 

2 3 

CPU C1 CPU C1 CPU C1 

I2l ~ ~ C2 
C2 C3 C2 C3 

C1 

D (f,f2)=0. 185 o (f, f3)=0.185 

(a) 

C2 C3 ~ 
C1 C1 

EJ 15<1 C1 CPU 

C2 C3 C2 C3 C3 

D (f, r4 )=0 D (f, f5 )=0.185 o (f, r6 )=0 

7 CPU C1 8 CPU C2 9 C1 C2 

CPU C1 CP U C1 CPU C1 

rz: 171 ~ ~u (b) 

C2 C3 C2 C2 C3 
C3 

D (f, f7)=0.105 D (f, f9 )=0.1 05 

l OCP U C1 ® CPU 

~ C1 C3 

C2 C3 C2 
(el 

D (f, f 10)=0.105 
Figure 4.26. Reconstruction hypotheses evaluated in 
Example 4.19. 
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The unbiased reconstructions are determined, of course, by the possibilistic version 
of the join procedure. It is illustrated for reconstruction hypothesis t in Figure 4.27. 
Connections in the diagram indicate states of the individual three-dimensional 
projections whose possibility degrees are 1. The result of the join procedure, in which 
the join operation is performed only once, consists in this case of all quadrupples of 
states Land H that lie on paths in the diagram connecting its left and right nodes. 

When inspecting the three successful reconstruction hypotheses in Figure 4.26a, we 
see that all of them contain the subsystem based on variables CPU, Cl, and C2, as 
indicated by the shaded block. Any potentially successful hypotheses at the next 
refinement level must thus contain this subsystem. There are only three hypotheses of 
this kind, which are specified in Figure 4.26b. As indicated in Table 4.13, their unbiased 
reconstructions are equal. This is due to the fact that the two-dimensional projections 
do not contain any information. The reconstructions are not perfect: eight instead of six 
states are reconstructed and the distances are equal to 0.105. They are thus not 
acceptable according to the requirements of this problem. 

Coarsenings of the three successful reconstruction hypotheses need not be 
considered since they are clearly inferior: they are less refined (by definition) and their 
distances cannot be smaller than those of the successful hypotheses (i.e., they cannot be 
smaller than 0). However, coarsenings of the hypotheses 2,3, and 5 in Figure 4.26a (the 
unsuccessful ones) must be considered. Taking advantage of Figure 4.18, which 
describes the relevant lattice of G-structures, we can see that immediate refinements of 
the structures under consideration are the G-structures in the isomorphic class G4 • The 
two subsystems with three variables are chosen from within any of the subsystems 
shown in Figure 4.26a except the subsystem represented by the variables CPU, Ct, and 
C2 (and shaded in the figure), which is associated with the successful hypotheses. We 
know, however, that these pairs of subsystems are not successful, and also that no 
subsystem based on two variables adds in this case any information. Hence, all the 

Figure 4.27. Illustration of the join 
procedure for the reconstruction 
hypothesis 1 in Figure 4.26. 
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reconstruction hypotheses represented by the isomorphic class G4 can be rejected 
without even calculating their unbiased reconstructions and distances. 

It remains to consider reconstruction hypotheses based on the G-structures in the 
isomorphic class G 3• Since the subsystems represented by the variables CPU, C1, and 
C2 cannot again be included, there is only one hypothesis to be considered; it is specified 
in Figure 4.26c and its reconstructed behavior function/I 0 is given in Table 4.13. We see 
that this hypothesis is not perfect; its distance is 0.105 and, hence, it must be rejected. 

Since the only reconstruction hypothesis based on G2 is a coarsening of the 
successful hypotheses, it need not be considered. This leads to the conclusion that the 
solution set consists of the reconstruction hypotheses 1, 4, and 6 specified in Figure 
4.26a. 

This result should improve the insight of the investigator by focusing his attention 
on the critical subsystem based on the variables CPU, C1, and C2, which represents the 
successful hypotheses. According to this subsystem, the utilization of CPU can be kept 
high by any arrangement in the computer complex by which the utilization of the 
channels C1 and C2 is prevented from being high or low for both of them 
simultaneously. 

Example 4.20. This example is based on data collected in a study of premarital 
contraceptive usage (Note 4.13). States of the following binary variables were 
determined for a population of 414 undergraduate female university students: 

VI-attitude on extramarital coitus ({}-always wrong, 1-not always wrong); 
v2-use of the university contraceptive clinic ({}-yes, 1-no); 
v3-virginity ({}-virgin, 1-nonvirgin). 

Frequencies N(c) of the individual states and tht: corresponding probabilistic behavior 
function/are given in Table 4.14a. 

When reconstruction hypotheses based only on C-structures are considered, we 
can use the RC-procedure to obtain hypotheses at the first level of refinement. Their 
block diagrams, graphs, and information distances (obtained as a result of their 
evaluation) are given in Figure 4.28. Using the information distance preordering and the 
distances at the first level of refinement, we can determine lower bounds of distances for 
all reconstruction hypotheses at the second level of refinement, as indicated in the figure. 
For instance, D6 ~ 0.0637 since hypothesis 6 is a refinement of hypothesis 3 and 
D3 = 0.0637. These lower bounds of distances directly imply that hypothesis 2 is a 
member of the solution set. 

We evaluate now hypothesis 4, which has the least lower bound among the 
competing hypotheses at the second level of refinement, and obtain the actual distance 
D4 = 0.0127. Since it is smaller than any of the lower bounds of the other hypotheses 
and D7 ~ 0.0637, hypothesis 4 is a member of the solution set. Observe that we arrived 
at this conclusion without actually evaluating either the competing hypotheses or the 
successor. If we are interested in hypothesis 7, we can determine that D7 = 0.0802 and, 
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TABLE 4.14 
Behavior Functions in (a) Example 4.20, and (b) Example 4.21 

(a) (b) 

VI V2 V3 N(c) ftc) SI S2 S3 S4 ftc) 

c=o 0 0 23 0.056 c = 0 0 0 0 1/3 
0 0 1 127 0.307 0 0 1 0 2/3 
0 1 0 23 0.056 0 0 2 0 1/3 
0 1 1 18 0.043 0 0 3 0 1/3 
1 0 0 29 0.070 0 1 0 0 1 

0 112 0.270 0 0 3 1/3 
0 67 0.162 0 0 2/3 

15 0.036 0 1 1/3 
0 2 1 
0 1 3 1/3 
0 0 2 2 1/3 

0 1 2 1 
0 2 2 1/3 
0 3 2 2/3 

3 2 1/3 
0 0 3 1/3 

3 2/3 
2 3 2/3 
3 3 1/3 

obviously, we must include it in the solution set since it is more refined than any other 
hypothesis in the refinement lattice. 

Members of the solution set are shown in Figure 4.28 by the shaded boxes. We can 
see that they are totally ordered in this case by the combined ordering relation. We can 
see that variables VI (attitude) and V2 (use of clinic) are more determined by variable V3 

(virginity) than by each other. The relationship is particularly strong between V2 

and V3' 

Example 4.21. The aim of this example is to illustrate some issues that arise in the 
reconstruction problem where the given behavior system is memory dependent. The 
system represents three variables defined for an individual person (vI-job perform
ance, v2-overall health condition, v3-stress) whose support is time (totally ordered). 
Observations were made each day for some period of time. The constraint among the 
variables is expressed in terms of the possibilistic behavior function in Table 4.14b, 
which is defined on the state set of the following sampling variables: 

SI.t = vI .to 

S3.t = v3 •to 



www.manaraa.com

254 CHAPTER 4: STRUCTURE SYSTEMS 

Q=O 

0 1=0.0059 

4 

Q=2 

Vl 
0 4 2:.0.0059 (=0.0127) 

V3 
D 72:. 0.0637 (=0.0802) 

Figure 4.28. Illustration of the reconstruction problem discussed in Example 4.20. 

The behavior function was derived from data by the mask evaluation method described 
in Section 3.6. Without going into further details regarding previous stages of this 
investigation, let us focus on the reconstruction problem of the given behavior function. 
Assume the standard formulation of the problem based on the concepts of unbiased 
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reconstruction and information distance. Assume further that reconstruction hypo
theses based only on C-structures are requested and that the maximum acceptable 
distance is 0.1. 

First, we generate and evaluate reconstruction hypotheses based on C-structures at 
the first level of refinement. They are specified in Figure 4.29 (hypotheses 1-6), where the 
sampling variables Sk are represented by their identifiers k (k E N 4) and subsets of 
variables are separated by slashes. The evaluation of these hypotheses consists of 
determining their unbiased reconstructions (by the possibilistic version of the join 
procedure) and calculating their distances [by formula (4.42)]. 

Since hypothesis 4 has the smallest distance (D4 = 0), we generate and evaluate all 
its immediate C-refinements. There are five of them, labeled 7-11. The smallest distance 
in this group is D 10 = 0.021. It follows from the monotonicity of the information 
distance that the distance of each hypothesis at the first level of refinement is also a lower 
bound of distances of all its refinements. Hence, hypothesis 5, whose distance is smaller 
than 0.021 (D 5 = O.ot 79), is the only one at the first level of refinement that has the 
potential of being a source of refinements with distances smaller than or equal to 0.021. 
However, we can easily find that each immediate refinement of hypothesis 5 is also a 
refinement of one of the other hypotheses at the first level. This implies that each 
immediate refinement of hypothesis 5 is either among hypotheses 7-11 or among those 
with lower bounds of distances greater than 0.021. Hence, hypothesis 10 is the best one 
at the second level. Its immediate refinements are hypotheses 12-15, among which 
hypothesis 13 has the smallest distance. 

To make sure that hypothesis 13 is the best one at the third level, we have to 
evaluate all remaining hypotheses at this level except those which are refinements of 

17 

12/13/4 

0 17=.2381 

19 

12/24/3 

0 19=.2056 
Q=4 

124/134 

0 6=.0449 

Q=2 

Q=3 

Figure 4.29. Reconstruction hypotheses evaluated in Example 4.21. 
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hypotheses 1, 3, 7, and 8, whose lower bounds exceed D13. Since hypothesis 7 is a 
refinement of hypothesis 1, we can neglect it. Graphs of hypotheses 1, 3, and 8 are shown 
in Figure 4.30a. Graphs of hypotheses that are not their refinements at the third level 
must contain edges (1,4), (3,4), and either edge (1, 2) or edge (2,4). There are only two 
graphs that satisfy these conditions. They are shown in Figure 4.30b. The first one is 
actually the graph of hypothesis 13; the second one represents hypothesis 12/14/34, 
which is the only potential competitor of hypothesis 13. 

After evaluating this potential competitor, which is labeled in Figure 4.29 as 
hypothesis 16, we see that D16 = 0.1188 > DU • Hence, hypothesis 13 is the best one at 
the third level of refinement. 

Since the smallest distance at the third level (D 13 = 0.065) is smaller than the largest 
acceptable distance (0.1), we have to explore level 4. There are 15 hypotheses at this level 
(represented by all pairs of edges in the graphs with four nodes), but only four of them are 
not refinements of hypotheses 9,12,14, and 16, whose distances exceed the critical value 
0.1. They are: 12/13/4, 12/23/4, 12/24/3, and 13/34/2. Theirlabels and distances are given 
in Figure 4.29. Since all of the distances are greater than 0.1, none of these hypotheses is 
a member ofthe solution set and no further refinements are necessary. The solution set 
is totally ordered and consists of hypotheses 4, 10, and 13 (and, possibly, hypothesis 0-
the overall system 1234). 

Observe that by utilizing the preordering of the information distance, we were able 
to solve this problem (with complete certainty) by evaluating only 20 out of 63 possible 
reconstruction hypotheses, i.e., less than one third. For systems with larger number of 
variables, the utilization of the information distance preordering tends to be even more 
significant. In general, the more discriminated (by their distances) are the reconstruction 
hypotheses evaluated at the individual refinement levels, the more effective is the 
preordering. 

It is often useful to inspect the increments in the minimal distance associated with 
adjacent refinement levels. For that purpose, we determine the distance of the most 

2 1 2 2 I21 ~ !?{ (,) 
3 4 3 4 3 4 

CD CD ® 

122 

~s (b) 

3 4 
@ 

3 4 
@ 

Figure 4.30. Graphs of several reconstruction 
hypotheses discussed in Example 4.21. 
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refined hypothesis and calculate the average distance increment by dividing this largest 
distance by the total number of refinement levels. In this example, the distance of the 
most refined hypothesis 1/2/3/4 is 0.4591 and the average distance increment is thus 
0.4591/6 = 0.0765. Extrapolating from the known distance values, we can then draw a 
plot characterizing the dependence of the minimal distance, say D1, on the refinement 
level I. For the example discussed, such a plot is shown in Figure 4.31. The plot is exact 
for 1=0, 1,2,3,6, approximate for 1=4 (we know that 0.1188 ::;; D4 ::;; 0.1748), and 
estimated for I = 5. 

It remains to resolve the issue of control uniqueness for each member of the 
solution set (Section 4.4, Example 4.6). As shown in Figure 4.32a, variables 1, 2, 3 are 
obviously generated variables, while variable 4 is the only generating variable. Each of 
the generated variables must be controlled (determined) by exactly one subsystem in 
each reconstruction hypothesis. In the case of hypothesis 134/234, variables 1 and 2 are 
clearly controlled by the subsystems 134 and 234, respectively, but variable 3 can be 
controlled by either of them. Which of the subsystems is chosen to control variable 3 
may be decided by their generative uncertainties. The one that is able to generate the 
variable with smaller uncertainty is normally preferred. In our example, we calculate the 
conditional V-uncertainties V(311, 4) = 0.834 and V (312,4) = 0.679 associated with 
subsystems 134 and 234, respectively. Since V(312,4) < V(311,4), the second sub
system is chosen to control variable 3. 

We must also decide how to represent the generating variable 4 in the subsystems. 
There are three options: the variable can be stored in either of the subsystems or in both 
of them. If it is stored only in one of them, then it must be used as input variable in the 
other one. It should be emphasized, however, that differences between these options are 
more stylistic than functional and, consequently, the choice is, in fact, rather arbitrary. 
In our example, let variable 4 be stored in subsystem 234 and viewed as an input variable 
in subsystem 134. 

The result of the two decisions regarding the roles of variables 3 and 4 in the 
reconstruction hypothesis 134/234 is expressed by the block diagram in Figure 4.32b. 

Figure 4.31. Dependence of the 
minimal distance D/ on the re
finement levell (Example 4.21). 
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Also shown in the block diagram are the masks associated with the individual 
subsystems, in which the generated, generating, and input variables are indicated. 

The final block diagrams of the remaining members of the solution set
hypotheses 14/234 and 14/24/34--are shown in Figures 4.3c and 4.3d, respectively. In 
either case, roles of all sampling variables, as specified in the block diagrams, are 
obviously unique. 

It is important to realize that only some reconstruction hypotheses are meaningful 
when dealing with memory-dependent systems. Indeed, a hypothesis is clearly not 
meaningful when a generating variable is not included in at least one subsystem of the 
hypothesis that contains the associated generated or input variable, or another 
generating variable (defined in terms of the same basic variable) from which it can be 
determined by storing. Such a generating variable would be left undetermined (in limbo) 
since it could neither be generated (due to its generating role) nor derived by storing 
another variable that itself is determined in some specific way. For instance, when the 
overall system is characterized by the mask in Figure 4.32a, all hypotheses that do not 
include both variables 3 and 4 in at least one subsystem are meaningless. This implies 
that exactly one half of reconstruction hypotheses based on C-structures are meaning
less in this case; these are hypotheses whose graphs do not contain the edge (3, 4), e.g., 
123/124, 14/24/13/23, 123/4, 13/24, etc. Although the solution set in Example 4.21 does 
not contain any meaningless hypotheses, the solution process could have been 
simplified when only meaningful hypotheses were evaluated (eight of the 20 evaluated 
hypotheses were evaluated unnecessarily). 

Assuming that the support set involved is totally ordered, the notion of a 
meaningful reconstruction hypothesis for memory-dependent overall behavior systems 
can formally be defined as follows. A reconstruction hypothesis h is meaningful if and 
only if each generating variable Sk' which is defined by the equation 

is included in at least one subsystem of h that contains a variable Sj defined by the 
equation 

Sj,l = Vi,l+b, 

where b > a when the variables are generated in the increasing order of t (in the 
predictive manner), and b < a when they are generated the other way around (in the 
retrodictive manner). This notion of meaningful reconstruction hypotheses can be easily 
generalized to memory-dependent systems based on two or more totally ordered 
support sets (such as two-dimensional or three-dimensional Cartesian spaces), but the 
formalization becomes considerably more complicated for such systems, primarily due 
to the large increase in the number of possible generative orders. 
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4.8. RECONSTRUCT ABILITY ANALYSIS 

The squirming facts exceed the squamous mind, 
If one may say so. And yet relation appears, 
A small relation expanding like the shade 

Of a cloud on sand, a shape on the side of a hill. 

-WALLACE STEVENS 

Reconstructability Analysis is an example of a package of methodological tools 
within the GSPS that deals with a significant class of problem types characterized by a 
common theme: the relationship between overall systems and their various subsystems. 
This class of problem types involves two epistemological systems types: generative 
systems and structure generative systems, both represented usually by their behavior 
forms. It is naturally divided into two subclasses, which differ from each other in the 
epistemological type of the initial (given) system. Problems in which the initial system is 
a generative structure system are referred to as identification problems; those in which 
the initial system is a generative system are called reconstruction problems. 

General types of identification and reconstruction problems, in which no 
properties are recognized in state sets of the variables involved, are formulated and 
discussed in Sections 4.6 and 4.7, respectively. Basic issues (or subproblems) associated 
with these problems that are independent of specific methodological distinctions are the 
subject of general reconstructability analysis. They are depicted in Figure 4.33 and the 
following is their list: 

• a determination of the reconstruction family for a given structure behavior 
system; 

• a determination of the identifiability quotient (or reconstruction uncertainty) for 
a given structure behavior system; 

• a determination of the unbiased reconstruction for a given structure behavior 
system; 

• a determination of the least risk reconstruction or, perhaps, some other kind of 
reconstruction for a given structure behavior system; 

• a resolution of local inconsistencies in a given structure behavior system (Section 
4.11); 

• a generation of desirable reconstruction hypotheses for a given behavior system; 
• a calculation of desirable projections of a given behavior system; 
• a calculation of the distance between the given behavior system and the one 

reconstructed from a reconstruction hypothesis; 
• an ordering of relevant reconstruction hypotheses and determining the 

admissible reconstruction hypotheses (the solution set in the reconstruction 
problem); 

• a determination of the control of the variables involved. 
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Figure 4.33. Summary of basic issues that are the subject of reconstructability analysis. 

From the standpoint of the epistemological hierarchy of systems, we can easily see 
that reconstructability analysis deals with sequences of problem types that belong to the 
four categories of problems that are characterized in Figure 4.34 by the labeled arrows. 
The following is a specific listing of the subproblems associated with reconstructability 
analysis that are subsumed under each of these categories: 
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I Figure 4.34. Categories of problem types 
involved in reconstructability analysis. 

I-reconstruction family, identifiability quotient, unbiased or least risk 
reconstruction; 

2-projections; 
3--resolution of local inconsistencies, generation and ordering of reconstruction 

hypotheses, control of variables; 
4--distance. 

Alternative types of identification or reconstruction problems emerge for different 
methodological distinctions. For instance, when dealing with continuous variables, 
projections from an overall behavior system not only depend on the chosen subsets of 
variables, but also can be influenced by transformations in the coordinates. The three
dimensional solid object shown in Figure 4.35a, for example, can be totally re
constructed from three of its two-dimensional (planar) projections (views), say left side, 
front, and bottom (Figure 4.35b), based on the Cartesian coordinate system specified in 
the figure. Although this reconstruction property is preserved under displacements of 
the origin of the coordinate system, it is obviously not preserved under its rotations. In 
fact, there is a continuum of projections of the same object, which corresponds to the 
continuum of rotations of the coordinate system or, alternatively, to the continuum of 
rotations of the object in the same coordinate system. In addition, auxiliary projections 
can be made into any plane defined within the coordinate system employed. On top of 
all this variety in projections, we should also realize that the projections illustrated in 
Figure 4.35 are only one special kind of projections-so-called orthographic projections, 

obtained by erecting perpendiculars from every point of the object to the respective 
projection planes. Another kind of projections, usually called shadows, are obtained by 
connecting every point of the object with a fixed point (called projection point or light 
source) and taking intersections of these straight lines with the chosen projection plane. 
Clearly, there is again a continuum of projections, which corresponds to the continuum 
of locations of the projection points. Furthermore, intersections of the object with 
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Figure 4.35. Solid object reconstructable from three of its two-dimensional orthographic 
projections. 

various planes (so-called slides or slices) can also be used as its two-dimensional 
representations. 

In spite of the tremendous variety of possible projections for systems of continuous 
variables, the basic issues regarding the relationship between wholes (say three
dimensional solid objects) and parts (their various two-dimensional or one-dimensional 
projections)-those of reconstruction family, unbiased reconstruction, local con
sistency, distance, etc.-remain the same, even though they may take appropriate special 
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forms. For example, the join procedure, by which the unbiased reconstruction is 
determined from two-dimensional orthographic projections, can be performed by 
erecting an unrestricted cylinder for each of the available projections and, then, 
determining the common volume of all these cylinders (i.e., set intersection of their 
points). There are, of course, some additional problems when dealing with continuous 
variables, associated basically with the choice of appropriate projections. Although 
these problems are of great importance to areas such as optical and mechanical 
engineering, cartography, and tomography, they are special problems, not applicable to 
all systems. As such, they are beyond the scope of this book, even though the GSPS 
should be equipped to deal with them. Some of these problems have been studied in 
descriptive geometry and, more recently, in the area of image processing. 

A methodological package, such as the one for reconstructability analysis, should 
be available in an interactive mode as well as in an automatic (batch) mode. When 
operating under the interactive mode, the user may employ the relevant procedures in 
any order and piecemeal. His decisions are based on the intermediate results from steps 
taken previously as well as his background knowledge. In dealing with a reconstruction 
problem, for instance, he may start with an initial structure system as a feasible 
reconstruction hypothesis, evaluate it, and, if desirable, compare it with its immediate 
refinements, with all reconstruction hypotheses in its structure neighborhood, with 
other feasible hypotheses that are not in its neighborhood, or he may proceed in any 
other way. In the identification problem, he may compare several competing structure 
systems based on the same variables by calculating their identifiability quotients. 
Depending on the results, he may then decide to determine reconstruction families or 
some specific kinds of reconstructions only for some of them. The fact that the 
interactive mode allows the user to focus on certain specific questions and take full 
advantage of his background knowledge makes it attractive for dealing with large 
systems, where the full processing is practically impossible due to unacceptable 
computational demands. 

When operating under the automatic mode, a number of alternatives of sequencing 
the various procedures should be made available to the user to allow him to deal with 
meaningful variations of the problem involved. In the reconstruction problem, for 
example, one sequence of procedures, which are repeated at each level of refinement, 
may consist of the RC-procedure, join procedure, calculation of distance, and decision 
procedure regarding the continuation; in another procedure, the RC-procedure may 
alternate with the RG-procedure (restricted to refinements in the same r-equivalence 
class), each followed by the other three procedures (the join procedure, etc.); still other 
sequences may be based on coarsening rather than refining procedures, etc. One of the 
sequences must be adopted as a default option, perhaps the simple sequence based on 
the RC-procedure. 

In addition to its main role in analyzing natural systems, reconstructability analysis 
can be utilized in some problems associated with man-made systems as well. For 
instance, the concept of structure neighborhood is directly applicable to the problem of 
identifying defects in connections between elements of a structure system in situations 
where direct observations of the connections is not possible. When properly used, it may 
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also be of great help in systems design. For example, it can be utilized for determining 
the whole set of structure refinements that totally preserve a given behavior system to be 
designed. Such refinements serve then as a base for performing the design in a natural 
piecemeal fashion, making it thus more manageable. The term "natural" is used here to 
indicate that the refinements contain only the input and output variables included in the 
given behavior system, i.e., no additional (or artificial) variables are introduced at this 
stage. In each refinement, at least some of the given variables participate in several 
subsystems and assume thus several different roles. In the highest refinements, this 
mUltiple role utilization of each variable reaches its limit. Further variables must be then 
introduced, where necessary, by the usual decomposition methods or other appropri
ate way of systems design. 

In spite of the indicated utilization of reconstructability analysis in the area of man
made systems, it should be emphasized that its main role is in the investigation of 
natural systems. This results from the fact that the whole-part relationship is far more 
intricate in natural systems than in man-made systems. For instance, every man-made 
structure system is also a definition of the associated overall system. This is a direct 
consequence of the fact that coupling variables of any man-made system have no 
meaning other than being either variables that represent a unique behavior system 
(given in the design problem) directly, or being artificially introduced as coupling 
variables for the sole purpose of representing this unique system indirectly. Hence, the 
reconstruction family of every man-made structure system is unique and consists solely 
of the join of the behavior functions of its elements. That is, the overall system of every 
man-made structure system is always represented by the unbiased reconstruction of the 
structure system. 

This one-to-one correspondence between man-made structure systems and the 
overall systems associated with them is undoubtedly one reason, perhaps the most 
important one, why the relationship between comparable behavior and structure 
systems in systems inquiries (i.e., inquiries of natural systems) is often not properly 
understood, particularly by people with engineering education or experience. Indeed, 
many large systems have been described in the literature that are supposed to 
characterize various natural phenomena and are constructed by interconnecting smaller 
systems (subsystems). Using the resulting structure system in a particular case, 
inferences are then made regarding various properties of the overall system in a manner 
analogous to man-made systems, i.e., by joining or composing behavior functions of 
relevant elements. Such inferences are obviously based on the assumption that the 
structure system represents the overall system in the same way as in man-made systems. 
This unjustified and usually incorrect assumption, which is never stated explicitly in 
such studies, is apparently taken for granted, as a result of the invalid and misleading 
analogy with man-made systems. 

It is interesting to compare a different, quite illuminating way in which Robert 
Rosen arrives at basically the same conclusion [R06]: 

By analysis we mean here the resolution of a system into a family of subsystems 
somehow "simpler" than the original system from which they were extracted, and 
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attempting to infer the properties of the original system from the properties of the 
subsystems. The extraction of a subsystem corresponds formally to a process of 
abstraction in which a number of degrees of freedom of the original system (i.e., 
potential interactive capabilities) are excluded, and only a limited number are 
retained. This process of abstraction can be physically implemented (as when a 
molecular biologist extracts a fraction of molecular species from a cell, thereby 
creating an abstract cell) or they can be purely formal (as when an ecologist 
represents a population of real organisms in terms of predation relations). The basic 
requirements of such abstractions are the following: 

(1) The subsystems so obtained must be "simpler" than the original system 
from which they are abstracted; 

(2) The subsystems must be obtained by "natural" means (i.e., utilizing familiar 
and justifiable procedures); and 

(3) The properties of the subsystems so obtained must permit the determi
nation of the properties of the original system. 

The property (1) is obviously crucial; nothing is gained if we extract systems as 
intractable as the original system. This has long been recognized implicitly in 
scientific modes of analysis. Of equal importance is the property (3); any property of 
isolated subsystems not bearing on the properties of the original system is an 
artifact. The property (2), however, is a purely subjective matter, and refers only to 
the manner in which we find it convenient to interact with the original system. It thus 
stands on a different footing from (1) to (3). 

Nevertheless, in many empirical modes of system analysis, the greatest weight is 
placed upon condition (2). It seems to be intuitively hoped that, by relying on 
procedures which satisfy (2), the conditions (1) and (3) will automatically be satisfied. 
At the very least, it is hoped that (1) + (2) will imply (3). However, from what we have 
already said, this is plainly absurd, in general. Indeed, what we learn from the above 
is that the crucial properties (1) and (3), which must be satisfied by any useful means 
of analysis of systems, must be allowed to determine what we are to regard as 
"natural." Indeed, "naturality" must not be allowed to be posited in advance, but 
only in terms of its bearing on the problems under discussion in a particular context. 

A simple example may make this clear. In physics, the three-body problem is 
complex in a well-defined sense; the dynamical equations governing a system of 
three gravitating masses in an arbitrary configuration cannot be integrated directly. 
We could hope to approach this kind of problem by analysis into a family of 
"simpler" subsystems, which will allow us to solve the problem. Intuitively, the 
subsystems available to us are two-body systems and one-body systems. These are 
indeed "simpler" than the original system, and are abstracted from that system in 
"natural" ways. However, it is clear that we cannot solve a three-body problem in 
this fashion, for the act of decomposing the original system into isolated simpler 
subsystems destroys irreversibly the dynamics in which we are originally interested 
(here again we see the inability of physics to deal with arbitrary interaction). Thus, 
from the standpoint of solving the three-body problem, our apparently "natural" 
decompositions are useless; if analysis is to be successful in this kind of problem at 
all, the appropriate subsystems (i.e., those which satisfy (3)) must necessarily be of a 
kind which would appear most "unnatural" in terms of what we find it convenient to 
do physically to a system of particles. 
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4.9. SIMULATION EXPERIMENTS 

Experimentation in the computer is not merely possible but may give information 

that is otherwise unobtainable. 
-w. Ross ASHBY 
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As an example of metamethodological considerations within the GSPS, simulation 
experiments are described in this section by which some fundamental characteristics of 
reconstructability analysis (associated with the reconstruction problem) have been 
determined. The purpose of these characteristics is threefold: (i) to get a deeper 
understanding of reconstructability analysis; (ii) to help GSPS users to properly utilize 
reconstructability analysis in their overall systems investigations; and (iii) to evaluate 
new principles such as the new principle of inductive inference discussed in Section 4.10. 

In a typical experiment, a reconstruction hypothesis was selected for a given 
number of variables and cardinalities of their state sets. The process of generating data 
by this hypothesis was then simulated on a computer. In most of the experiments, 
sequences of 2,000 data points were generated. Reconstructability analysis was 
performed, according to rules described later, on ten different segments of each of these 
data sequences, containing 10,20,40,80,160,320,640,1000,1500, and 2000 data points. 
Results obtained for each data segment were then compared with the given reconstruc
tion hypothesis. 

For a given number of variables and their state sets, sufficient number of different 
data sequences were generated and analyzed. Average results of these experiments were 
then employed in determining the various characteristics. For the sake of simplicity, the 
experiments were restricted to C-structures. They were performed for sets C(j 3, C(j 4, and 
C(j 5; in each of them, all refinement levels were properly represented. Comparable 
experiments were repeated for state sets of equal cardinality (2, 3, 4, or 5) for all variables 
involved, as well as some specific mixtures of different cardinalities. Since the 
distinctions between variables characterized by the concepts of mask and environment, 
which are very important in overall systems investigations, are of no significance for the 
reconstructability analysis proper, the experiments were performed only for neutral and 
memoryless systems. 

Each data sequence >vas generated with the help of a random generator according 
to a specific probabilistic structure system (representing a C-structure). It was then 
analyzed in probabilistic as well as possibilistic fashion. In fact, one of the purposes of 
the experiments was to compare results of these two analyses and identify their 
complementary ranges of applicability. 

It was observed at the initial stage of the experimentation that the possibilistic 
analysis shows a tendency to naturally cluster reconstruction hypotheses at each level of 
refinement into good and bad ones, i.e., into hypotheses with small distances and large 
distances, respectively. It was also observed that the correct hypothesis (the one by 
which the analyzed data were generated) often does not have the smallest distance, but it 
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almost always belongs to the good cluster. Due to these observations, the two analyses 
(probabilistic and possibilistic) were performed according to slightly different rules. 

In probabilistic analysis, each generated data sequence was analyzed twice, for two 
different search procedures in the relevant refinement lattice. According to the first 
procedure, only structures with the minimum distance were refined at each level of 
refinement. According to the second procedure, all structures whose distances did not 
exceed the minimum distance by more than 100 % were refined. Separate characteristics 
were determined for either of these two procedures . 

.. In possibilistic analysis, structures at each level of refinement were clustered into 
good and bad ones, and only the good structures were further refined. Each data 
sequence was analyzed twice, for two different clustering procedures. To describe the 
clustering procedures, let 

R = {(C;, dJliENr } 

denote the set of all C-structures C; that were evaluated at some refinement level of a 
particular experiment and their distances d;. Assume that d; ::;; d; + 1 for all i E Nr _ 1 and 
let 

and 

B = {Cc + 1 ' Cc+ 2 ,"" Cr } 

denote the clusters of good and bad structures, respectively, where 

(i.e., G is always nonempty while B may be empty in special instances). 
In the first clustering procedure, c is determined by the smallest value of i for which 

the difference d; - d; _ 1 exceeds the average difference in R for all i e N r _ l' That is, 

for ieNc(do = 0) and 

Let us call this procedure a clustering by average difference or AD-clustering. 
In the second clustering procedure, c is determined by that value of k e Nr for which 

the expression 
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reaches its minimum, where 

and 

This procedure is based on the natural clustering requirement that distances between 
clusters should be large while distances within clusters should be small; let us call it a 
clustering by inside and outside distance or IOD-clustering . .... 

Using the diagram in Figure 4.36 as a guide, the complete procedure involved in 
one experiment can be now summarized. It begins with a selection of a structure 
behavior system TSF (viewed as the true system in the experiment), which is based on a 
C-structure. This structure system, which represents on overall behavior system TF 
(obtained from 1SF by the join procedure), is simulated on a computer and used for 
generating data. Once the data are generated, an overall memory less behavior system 
DF (probabilistic or possibilistic) is derived from the corresponding data system D. 
Reconstructability analysis is then performed for system DF according to one of the 
search procedures mentioned (based, e.g., on one of the two kinds of clustering for 
possibilistic systems). The result is a sequence of sets of C-structures (and their 
distances) that are evaluated at the individual refinement levels of the relevant 
refinement lattice, say sets 

TSF .. 0 

j 
TF 

II OF 

! 
DSF 

! 
RF 

.. 

Evaluated C-st ructures .r----- and their d istances 

P=l 

~=2 

R=x __ Level of T SF 

Figure 4.36. Summary of a simulation experiment. 
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for 1= 1,2, ... , n(n-I)/2, where n is the number of variables involved. Set E/ 
associated with the same refinement level as TSF is of particular interest. System DF is 
also used for deriving a structure system DSF based on the same C-structure as the given 
structure system ISF, and this system (DSF) represents an overall behavior system RF (a 
reconstructed overall system). 

Set E j (lENn\n-l)/Z) and the overall behavior systems TF, DF, and RF, obtained for 
all experiments of the same kind (certain number of variables, certain state sets, 
probabilistic or possibilistic option, etc.), are the resources from which the various 
characteristics of reconstructability analysis can be determined. Let me now illustrate 
these characteristics by a few examples for systems with three variables; a more complete 
set of characteristics based on the described experiments for n = 3, 4, 5 and several 
cardinalities of state sets is presented in Ref. [HAl]. 

For probabilistic systems (with three variables), some basic characteristics are 
expressed by the plots in Figure 4.37. They are based on the search procedure in which 
only the structures with minimum distance are refined. 

Plots (a) characterize the effect of the number of observations (data size Idl) on the 
performance of reconstructability analysis for two different state sets-two states and 
five states per variable. The performance is expressed by the percentage of those 
experiments in which the correct structure was reached by the search procedure and 
emerged as a structure with minimum distance at the respective level of refinement. We 
can see that the performance of 100 % is reached rather quickly in both of these cases. 
Although a convergence to 100% performance with increasing number of observations 
is a general trend in all investigated cases, the rate of convergence somewhat decreases 
with increasing number of variables. This is primarily caused by the high selectivity of 
the search procedure involved. We can also observe that variables with five states 
(upper plot) perform better than those with two states (lower plot). This, again, is a 
general trend: increase in the cardinalities of the state sets involved results in improved 
performance. For any particular number of variables, the performance characteristic 
representing systems with binary variables can be thus viewed as the worst case. 

The remaining plots in Figure 4.37 are based only on binary variables. Plots (b) 
characterize how much the correct structure is discriminated by the information 
distance from other structures considered at the same level of refinement. The lowest 
plot represents D (Df, Rf), i.e., the distance of the correct structure; the middle plot 
represents the smallest distance of structures that compete with the correct structure at 
the same level of refinement; the highest plot represents the average distance of all 
structures that compete with the correct structure (according to the search procedure) 
at the same level of refinement. Although shapes of these plots are affected by the 
number of variables and cardinalities of the state sets involved, as well as the kind of 
distance measure employed, the distances always decrease with the increasing number 
of observations and the distance of the correct structure converges to zero. 

Plots (c) compare the information distances between the true system TF and 
systems DF and RF, respectively. Since the respective pairs of probability 
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Figure 4.37. Some characteristics of reconstructability analysis for probabilistic systems. 

distributions-Tf, Df and Tf, Rf-are arbitrary, a general information distance measure 
is needed. Such a distance measure, say G, is defined by the formula 

G(lf 2f)=D(lf If+ 2f) D(2f If+ 2f) 
, '2 + '2 ' (4.44) 
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where If and 2f are arbitrary probability distributions defined on the same finite set of 
states, D is the special information distance defined by Eq. (4.40), and (If + 2f)/2 denotes 
the probability distribution obtained by taking the average of each pair of correspond
ing probabilities in If and 2f. The lower and upper plots in (c) represent D (Tf, Rf) 
and D (Tf, Df), respectively. The reconstructed system RF is thus closer to the true system 
TF than the system DF that is based solely on the available data. The significance of this 
rather surprising result is discussed in Section 4.1 O. 

Plots (d) characterize the relationship among state sets with nonzero probabilities 
in the three behavior systems involved in the simulation experiments-systems TF, DF, 
and RF; let us denote these state sets by TX, D X, and RX, respectively. The lower plot 
represents the percentage of those states in TF that are recognized in DF (due to scarcity 
of data), i.e., ( D X jT X) x 100; the upper plot represents the percentage of those states in 
TF that are recognized in RF, i.e., 

These plots clearly indicate that 

RX 
- x 100. 
TX 

(4.45) 

This property has a similar significance as the one expressed by plots (c) and, hence, its 
discussion is left for Section 4.10. 

~ Possibilistic counterparts of the described characteristics are given in 
Figure 4.38. They are based on the IOD-clustering. Since reconstructability analysis of 
possibilistic systems is based on dealing with clusters of structures rather than 
individual structures, the correspondence between the probabilistic characteristics and 
their possibilistic counterparts is not direct. 

Plot (a) in Figure 4.38 summarizes the performance of possibilistic reconstruct
ability analysis for different state sets (between two and five states per variable). A 
summary is used in this case because the differences for different state sets are small and 
no obvious trend emerges from them. The performance is expressed by the percentage 
of those experiments in which the correct structure is included in the cluster of good 
structures. The remaining plots in Figure 4.38 are based only on binary variables. 

Plots (b) characterize the upper and lower information distances for the two 
clusters of structures. As such, they are quite different from their probabilistic 
counterparts. Plots (c) and (d), on the other hand, are quite similar to their probabilistic 
counterparts. A possibilistic version of general information distance, on which plots (e) 
are based, is defined by the formula 

(4.46) 

where 1 f and 2f are arbitrary possibility distributions defined on the same finite set of 
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Figure 4.38. Some characteristics of reconstructability analysis for possibilistic systems. 

states, D is the special information distance defined by Eq. (4.42), and if V 2f denotes 
the possibility distribution obtained by taking the maximum of each pair of 
corresponding possibilities in if and 2f (see Note 4.8) .• 

All the simulation experiments for which the described characteristics were 
determined are based on the assumption that the data are generated by specific structure 
systems. Their objective is to determine how scarcity of data affects reconstructability 
analysis. Although such idealized experiments are valuable and represent a natural first 
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stage in the evaluation of reconstructability analysis, it is highly desirable to extend 
them to more general and realistic situations. Let me describe, as an example, 
generalized experiments that are currently under preparation. 

Similarly to the idealized simulation experiments, the generalized experiments will 
be performed in groups, each one characterized by a particular number of variables and 
specific cardinalities of their state sets. A particular distribution will be chosen for each 
experiment in which the number of occurrences will be specified for each overall state of 
the variables involved. Some of the distributions will be selected from various data 
archives as well as literature, others will be generated by a random process. The two 
classes of experiments will be analyzed separately to determine whether distributions 
based on real-world data possess some special reconstruction properties when 
compared with the randomly generated distributions. 

Each distribution selected will be used in two ways. First, its reconstruction 
properties will be analyzed using both probabilistic and possibilistic methods. Second, it 
will be used for generating data, typically with 2,000 observations. Experimental 
distributions derived from various segments of the data will be then analyzed in the 
same manner as the original (true) distribution and by using the same method 
(probabilistic or possibilistic). Finally, relevant experimental results obtained for each 
segment of data will be compared with the corresponding theoretical properties 
obtained for the original distribution. The aim of this comparison is to determine how 
well the theoretical (true) properties are preserved in their various experimental 
counterparts. For each property viewed as significant, the final outcome of each group 
of experiments will be the dependence of average degree to which the property is 
preserved (and the variation of this degree) on the size of the analyzed data segment and 
the method employed. 

Simulation experimentation, such as that described in this section for reconstruct
ability analysis, is a fundamental tool of systems science for metamethodological 
studies. The GSPS should not only provide the user with methods for dealing with the 
various problem types, but it should also provide him with metamethodological 
characterizations of the methods. The set of characteristics of reconstructability 
analysis described in this section is a simple example of such a metamethodological 
characterization. 

4.10. INDUCTIVE REASONING 

If hypotheses do not spring from the brain of Zeus, where do they come from? The 
partial answer is that they come from some hypothesis-generating process. 

-HERBERT A. SIMON 

Although inductive reasoning emerged explicitly only in connection with the 
identification and reconstruction problems discussed earlier in this chapter, it is in fact 
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involved, in one way or another, in virtually every problem associated with the discovery 
approach to systems inquiry. It is thus desirable to overview the main issues associated 
with it. This is one of two aims of this section; the other aim is to introduce a novel 
principle of inductive inference based on some characteristics of reconstructability 
analysis. 

Rather than to view inductive reasoning in its traditional, narrow sense as the 
inference from particular cases to a general conclusion, I intend to use the name 
"inductive reasoning" as broadly as "to cover all cases of nondemonstrative argument, in 
which the truth of the premises, while not entailing the truth of the conclusion, purports 
to be a good reason for belief in it" (Encyclopedia of Philosophy, Macmillan, 1967). 

The notion of inductive reasoning has been a subject of great controversy in 
philosophical circles for centuries, especially after the publication of David Hume's 
classical analysis of this notion in 1739*. Although quite a number of arguments have 
been invented to overcome Hume's scepticism about the possibility of justifying 
inductive inference, each of these turns out in the final analysis to contain some flaws. In 
some cases, it is a hidden circularity (i.e., a justification of induction by induction) which 
destroys the argument; in other cases, it is the dependence of the argument on some 
metaphysical assumptions (such as the uniformity of nature) which makes it self
defeating. 

The main difficulty of all the arguments which try to resolve the Humean challenge 
is that they take it seriously as a meaningful problem. An alternative approach is to 
reject the notion of justifying inductive reasoning by deductive standards, which is 
implicitly included in Hume's analysis, and reformulate inductive reasoning as a process 
of truth estimation in the face of imperfect information. One of the most promising 
strategies for justifying inductive reasoning within the latter approach is based on the 
ideas of methodological pragmatism as recently proposed by Nicholas Rescher [RE7]. 
Due to its focus on methods as the key in the justification of inductive reasoning, 
methodological pragmatism is clearly relevant to the theme of this book; let me briefly 
summarize its main aspects. 

Rescher views inductive reasoning as a method for "truth-estimation through 
systematization with experience that effects the optimally plausible blending of 
conjecture with information-in-hand" [RElO]. He recognizes that our only access to 
information about nature is through our interaction with it, and if one is not prepared to 
rely on such interaction, then there is no choice but to abandon the whole project of 
inquiry into nature. Although the aims of this knowledge-producing inquiry are both 
cognitive and practical, the ultimate testing standard must be based on the success of the 
produced knowledge in the effective guidance of human actions. This is due to the fact 
that, in contrast with purely theoreticocognitive settings, practical situations require 
urgent decisions in the attempt to achieve desirable goals (e.g., to avoid death, injury, 
disease, pain, frustration, etc.). The necessity of inductive reasoning for practical and 

-David Hume, A Treatise of Human Nature, William Collins, Glasgow, 1962. 
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action-oriented decision making, essential for the survival and well-being of the decision 
maker, is discussed in great depth in Rescher's book The Primacy of Practice [RE4]. 

Since inductive reasoning is viewed as a method for question resolution in the face 
of incomplete information, its justification is a matter of justifying a method with respect 
to its pragmatic success; hence the name "methodological pragmatism." 

Rescher's justification of a method for inductive reasoning proceeds in two stages, 
referred to as the initial and ultimate justification, respectively. The initial justification, 
which is noninductive, requires a demonstration that the method otTers a relatively 
optimal prospect or potential of success when compared with compatible alternatives. 
The ultimate justification is a matter of the actual etTectiveness of the method, i.e., it is 
required that its success exceeds that of any other available competitors. 

An important aspect of Rescher's initial justification of a method of inductive 
reasoning is the consideration of a degree in which results produced by the method can 
be integrated into a system based on previous experience. Everything else being the 
same, various parameters of systematicity (completeness, cohesiveness, consonance, 
simplicity, etc.) are used as arbiters in making the initial justification of the method. This 
aspect follows from Rescher's coherence theory of truth [RES] and is discussed at great 
length in his book "Cognitive Systematization" [RE9]. 

Rescher also argues that inductive reasoning "lies at the very root of man's 
communicative use oflanguage. It is the natural language that closes the evidential gap 
between the claims at issue and the actual evidence by a fact-transcending imputational 
process of inductive nature" [REIO]. 

The relationship between inductive reasoning and natural language, quite 
compatible with the basic ideas of methodological pragmatism, is recognized in writings 
of a few of contemporary philosophers. One of the most explicit statements in this 
regard is by Max Black. He says [BL2]: 

I find it natural to think of induction as an institution and, indeed, as a rule-governed 
one. That is to say, as a system of human activities, involving appropriate 
terminology and also involving distinctive rules for the derivation of judgements. 
The inductive institution commits its participants to labeling certain situations in 
prescribed ways, to drawing inferences in prescribed fashions, and, notably, to 
adopting certain cognitive attitudes preparatory to taking appropriate 
actions .... Roughly speaking: inductive rules tell us what to say, how to think, and 
within limits, how to act .... There is an a priori aspect of the rules and the 
practices that are demanded of those properly using those rules; given our present 
language and the system of concepts that it embodies, we are logically unable to 
imagine wholesale deviation from them. But this does not mean that we have to be 
dogmatic: the constitutive rules of the inductive institution allow for considerable 
play in the differential judgements we make concerning inductive conclusions, the 
reliability of rules, and so on. Now it is the purpose of appeal to past experience to 
supply just such a basis of rational grounds for reinforcing or, within modest limits, 
for modifying the inductive institution and its components. Appeal to past 
experience can, however, be only gradualist and revisionist (to use political 
language): for revolutions in our modes of thought we must look elsewhere. 
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Inductive reasoning can be well formulated in terms of information theory. One of 
the most sophisticated contributions in this respect was made by Ronald Christensen 
[CH5-9J. He defines an induced proposition as a proposition which represents all, but 
no more than, the available information. Although induced propositions do not 
necessarily follow from the available information by deduction, instances in which 
deduction is applicable are also included as special (extreme) cases of induced 
propositions. Two general principles of inductive reasoning follow then from the notion 
of induced propositions: 

i. our beliefs should represent no more information than is available to us; 
ii. our beliefs should represent all of the iriformation that is available to us. 

It is fascinating that these very fundamental principles were clearly recognized by a 
Chinese philosopher Lao Tsu as early as the sixth century B.C., and are beautifully 
expressed in his book Tao Te Ching t by the following two simple statements: 

Knowing ignorance is strength. 
Ignoring knowledge is sickness. 

To develop a particular methodology for inductive reasoning based on these general 
principles, one has to commit to a particular meaning of the term "information." 
Different meanings are, of course, applicable under different contexts. In the context of 
systems inquiry, where information is viewed as a measure of the degree of constraint 
among variables of concern, the meaning is determined by the way in which the 
constraint is expressed. Within the framework of probability theory, the two general 
principles of inductive reasoning become principles of maximum and minimum 
entropy, respectively. For alternative frameworks, they are expressed by appropriate 
counterparts of these principles. Within possibility theory, for instance, they became 
principles of maximum and minimum U-uncertainty. 

The principle of maximum entropy is employed for estimating unknown prob
abilities (which cannot be derived deductively) on the basis of the available information. 
According to this principle, the estimated probability distribution should be such that 
its entropy reaches maximum within the constraints of the situation, i.e., constraints 
that represent the available information. This principle thus guarantees that no more 
information is used in estimating the probabilities than available. 

The principle of minimum entropy is employed in the formulation of resolution 
forms and related problems. According to this principle, the entropy of the estimated 
probability distribution, conditioned by a particular classification of the given events 
(e.g., states of the variable involved), is minimum subject to the constraints of the 
situation. This principle thus guarantees that all available information is used, as much 
as possible within the given constraints (e.g., required number of states), in the 
estimation of the unknown probabilities. It is basically a general principle for pattern 
recognition, as well characterized by Watanabe [WA7J: 

t Vintage Books (Random House), Chapter 71, New York, 1972. 
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Pattern recognition is an intellectual adaptation, in the presence of a number of 
events, aiming at revealing a "form" in them. The nearest mathematical translation 
of this theme would be that pattern recognition consists of formulating, reformulat
ing, modifying our frame of reference in such a way as to minimize, within the 
inevitable constraints, the entropy suitably defined according to this frame of 
reference. 

A proper use of both of the complementary methodological principles-the 
maximum and minimum entropy principles-forms the Christensen methodology for 
inductive reasoning; it is referred to as the entropy minimax methodology. In justifying 
this methodology, Christensen analyzes the grammatical and morphemic structure of 
the natural language and its evolution. He argues that 

Just as our physical measurements are relative to our physical frame of reference, 
our inductive judgements are relative to our conceptual frame of experience. A 
major portion of this experience is submerged in the structure of our language and 
the meanings of the words, phrases and sentences we use. The search for a solid 
"principle of induction" on which to anchor our generalizations is as futile as the 
search for an ultimate frame of reference for Newtonian mechanics ... [CH5, 
p.599]. 

Each generalization made by a person depends not only upon the particular 
data from which it is immediately drawn, but also depends less immediately upon 
the entire history of experience behind the evolution of the language in which the 
generalization is obtained .... The ultimate use of all propositions entertained by 
human beings is in the aid of making a decision of some kind or other when faced 
with alternative courses of action. Now what the decision will be is controlled by the 
beliefs and the value judgements ofthe decision-maker, where his beliefs include his 
assessment ofthe nature of the world external to him. The values and the beliefs are 
influenced both by the external world and by the individual himself .... 

Suppose that we assume that inductive reasoning is used generally by members 
of a society speaking a common language. Then adopting the first condition in the 
definition of an induced proposition, namely, that it represents no more 
information than is available, we have seen that the nondecreasing entropy law of 
thermodynamics is a consequence. From this law we conclude that future experience 
will tend to be at least as simply expressible in the currently prevailing language as is 
past experience. 

Adopting the second aspect of the definition of an induced proposition, namely 
that it represents all the information that is available, together with the assumption 
that inductive reasoning is used generally in the society, we arrive at the principle of 

the evolution of language: [A language will tend to evolve in a direction which will lead 
to a simpler description of the experiences of the members of the society using the 

language.] This implies that past experience can be simply described in the currently 
prevailing language. But this means that inductive reasoning will yield reliable 
representation of physical reality. Thus we have demonstrated a contingent validity 
of inductive reasoning, contingent upon the general use of inductive reasoning in 
society. In other words, the validity of inductive reasoning depends upon whether or 
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not it is conducted in a "living language." But, and here is the essential point, the 
contingency is within the control of those people who are making the decisions 
whether or not to believe the induced propositions. By basing their decisions upon 
the results of processes of inductive reasoning, they are validating the very thing 
upon which the validity of inductive reasoning is contingent. In this sense, decision
making upon the basis of inductive reasoning, conducted in the living language is a 
self-justifying process [CH9, pp. 168, 345-347]. 

279 

When considering all the arguments contributing to the justification of the entropy 
minimax methodology as a methodology for inductive reasoning-the four diverse 
arguments described in Note 4.6 that support the principle of maximum entropy and 
Christensen's justification of both principles in terms of the principle of the evolution of 
language-the methodology can be considered as well justified. It is likely that 
counterparts of this methodology for other classes of fuzzy measures (e.g., U
uncertainty minimax methodology) will be developed and properly justified. 

After this brief overview of some fundamental issues of inductive reasoning, let me 
now describe a novel principle of inductive inference. Since this principle is embedded in 
the reconstruction problem, let me name it the reconstruction principle of inductive 
inference. 

Assume that the constraint of the given overall behavior system was determined 
from some empirical data by appropriate inductive reasoning, say the entropy minimax 
methodology. Since all data are limited, often severely limited, this constraint is only an 
estimate of the way the variables involved are actually constrained; it is an unbiased 
estimate that is based on all information which the data base contains about the actual 
constraint. 

Suppose now that the actual constraint is such that it can be reconstructed from 
some particular set of its projections. The estimated constraint may not show this 
property, due to the limited data. However, it is likely that the reconstruction hypothesis 
based on the subsystems will be more successful in reconstructing the estimated overall 
constraint than its competitors at the same level in the refinement lattice. This 
superiority will then be exhibited by all coarsenings of this successful reconstruction 
hypothesis at each lower level in the lattice. Now we come to a crucial argument. If, 
indeed, the correct reconstruction hypothesis and/or its coarsenings are identified as 
superior at the various refinement levels, then any of them has the potential of 
reconstructing some of those overall states which the variables are actually able to 
assume, but which are not included in the available data and, consequently, are not 
included in the constraint of the given overall system. This is well documented by 
extensive experimental results exemplified by the plots in Figures 4.37d and 4.38d. 
Moreover, since each subsystem is associated with a smaller state set than the state set of 
the overall system, its constraint is generally better characterized by the data than the 
constraint of the overall system (e.g., the ratio between the number of observations and 
number of potential states is greater). This means that the superior reconstruction 
hypotheses have the ability to improve our original estimate of the overall constraint. 
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This again is well documented by experimental results exemplified by the plots in 
Figures 4.37c and 4.38c. These results clearly indicate that the inequality 

is always satisfied for finite data, regardless of the data size. This means that the overall 
system reconstructed from the correct reconstruction hypothesis is always information
wise closer to the true overall system than the one derived solely from the given data. A 
more direct evidence that the reconstructed constraint Rf is a better estimate of the true 
constraint Tf than the one based only upon data (Of) is expressed by the inequality 

where 15 1 denotes the Hamming (or city-block) distance. This inequality is also 
documented by results obtained by the simulation experiments. An example of actual 
experimental results for three variables and five states per variable is given in Tables 
4.15a and b for probabilistic and possibilistic systems, respectively. For comparison, the 
table also contains results based on the information distance. 

Whether or not we actually take the reconstruction from any of the superior 
reconstruction hypotheses at some level of refinement as an improved estimate of. the 
overall constraint depends on our belief that the reconstruction hypothesis in question 
does indeed reflect some underlying reconstruction property of the variables involved. 
How can the investigator be helped to rationally form his belief in this respect? I offer 
this answer: he can be helped by being provided with useful reconstruction charac
teristics prepared by extensive experimentation simulated on the computer, as described 
in Section 4.9. These characteristics enable him to evaluate his individual situations and 
develop the relevant beliefs. The characteristics can even be combined with appropriate 

TABLE 4.15 
An Example of Experimental Support of the Reconstruction Principle of Inductive 

Inference 

jdj 10 20 40 80 160 320 640 1,000 1,500 2,000 

(a) Probabilistic system 

b1(Tf, Df) 0.0132 0.0111 0.0086 0.0063 0.0044 0.0031 0.0023 0.0018 0.0015 0.0012 
b1(Tf, Rf) 0.0106 0.0073 0.0052 0.0036 0.0025 0.0018 0.0014 0.0011 0.0009 0.0008 
G(Tf, Df) 0.0952 0.0741 0.0526 0.0328 0.0174 0.0084 0.0042 0.0025 0.0017 0.0012 
G(Tf, Rf) 0.0697 0.0404 0.0213 0.0104 0.0045 0.0024 0.0013 0.0008 0.0005 0.0004 

(b) Possibilistic system 

b1(Tf, Df) 0.2779 0.2479 0.2188 0.1859 0.1508 0.1100 0.0883 0.0746 0.0627 0.0565 
b1(Tf, Rf) 0.2645 0.1999 0.1470 0.1216 0.1021 0.0764 0.0648 0.0544 0.0457 0.0403 
G(Tf, Df) 0.0999 0.0894 0.1002 0.0872 0.0776 0.0599 0.0526 0.0450 0.0379 0.0369 
G(Tf, Rf) 0.0972 0.0742 0.0691 0.0647 0.0568 0.0450 0.0383 0.0334 0.0260 0.0261 
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guidelines of how to form the beliefs or, eventually, some justifiable belieffunctions can 
be developed and one of them declared in the GSPS as a default option. It is obvious 
that any belief function should be expressed in terms of the reconstruction charac
teristics of type (a) and (b) in Figures 4.37 or 4.38 (performance and discrimination 
characteristics). 

Our ability to deal with the reconstruction problem otTers thus an unorthodox 
approach to inductive reasoning. It proceeds in two stages. In the first stage, an overall 
constraint is derived from the available data by using the usual principles of inductive 
reasoning (e.g., the entropy minimax). The second stage consists of three steps: 

i. superior reconstruction hypotheses are determined for the overall system at the 
various refinement levels; 

ii. beliefs of various degrees that these superior hypotheses reflect the actual 
reconstruction properties of the variables involved are formed, on the basis of 
relevant experimental characteristics, guidelines, or a specific belief function; 

iii. the given overall constraint is supplemented with (or replaced by) the 
constraints reconstructed by the superior reconstruction hypotheses, each 
associated with the respective degree of belief. 

While using only the information included in the available data, this two-stage method 
allows us to include in the estimated overall constraint certain features (e.g., overall 
states) which are not directly derivable from the data. Hence, it allows us, for instance, to 
predict or retrodict, with a specific degree of belief (credibility), certain states of the 
investigated variables which are not included in the data available at the time of making 
the prediction or retrodiction. 

4.11. INCONSISTENT STRUCTURE SYSTEMS 

... the distinction between reason and unreason can be decoupled from that 
between consistency and inconsistency . ... one can maintain as rigid a line as 
ever between rationality and irrationality even in the face of inconsistency . ... 
Inconsistency can be tolerated in the objects of thought and assertion, while, 
ultimately, discussion about them can and should be consistent at the meta-level of 
our cognitive commitments. 

-NICHOLAS RESCHER AND ROBERT BRANDOM 

Systems consistency is perhaps the most fundamental criterion for classifying 
structure systems. For structure behavior systems, it is closely associated with the 
identification problem (Section 4.6): when a structure behavior system is consistent, its 
reconstruction family is nonempty; when it is inconsistent, its reconstruction family is 
empty. 
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There are two kinds of inconsistencies in structure behavior systems. They are 
usually referred to as local and global inconsistencies. A structure system is locally 
inconsistent if it does not satisfy the requirements of local consistency, expressed by 
Eq. (4.20); it is globally inconsistent if it is locally consistent and, yet, its reconstruction 
family is empty. 

Example 4.22. Consider a structure behavior system whose elements are 
characterized by the probabilistic behavior functions specified in Table 4.16a. When the 
projections of these functions with respect to the coupling variable V2 are calculated, we 
obtain 

a= 0 
1 

0.6 
0.4 

a = 0 

We can see that the system is locally inconsistent since 

0.55 
0.45 

Example 4.23. The structure behavior system whose probabilistic behavior 
functions are specified in Table 4.16b is clearly locally consistent. From simple 
inspection of the equations that define the reconstruction family, it is evident, however, 
that the reconstruction family is empty. For example, probabilities of states 001 and 011 
(written in the order VI' V 2 , V 3 ) are required to be 0 by Ifand 2fwhile, at the same time, 
their sum is required to be 0.3 by 3f The system is thus globally inconsistent. 

Local inconsistencies in a structure system may be (and usually are) caused by the 

TABLE 4.16 
Examples of Structure Behavior Systems that are Inconsistent 

(a) Locally inconsistent structure system 

VI V2 liCe) V2 V3 llee) 

Ie = 0 0 0.5 2e = 0 0 0.4 
0 1 0.2 0 1 0.25 

0 0.1 0 0.15 
0.2 0.2 

(b) Globally inconsistent structure system 

VI V2 liCe) V2 V3 Ilee) VI V3 3/ee) 

Ie =0 0.7 2e = 0 1 0.3 3e = 0 0 0.4 
1 0 0.3 1 0 0.7 0 1 0.3 

0 0.3 
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fact that behavior functions associated with its elements are only estimates, each 
derived from limited experimental data. Such inconsistencies (in contrast with a global 
inconsistency) do not imply that the variables investigated are themselves inconsistent. 
They simply reflect the fact that we have only incomplete information regarding each of 
the subsets of variables involved in the structure system. It is this incompleteness (i.e., 
our ignorance) that creates the local inconsistencies and, consequently, it is meaningful 
and desirable to accept locally inconsistent structure systems and deal with them. 

A global inconsistency, on the other hand, is more serious. Its meaning is that 
the structure system is ill conceived; it is a mathematical artifact that has no meaning in 
the real world. Excellent examples of globally inconsistent wholes whose elements are 
locally consistent can be found in the world of graphic arts. I have in mind, for example, 
some drawings by M. C. Escher (such as his lithograph Belvedere) and, particularly the 
many drawings by the Swedish artist Oscar Reutersvard, which are referred to as 
impossible figures or perspective japonaise. 

Locally inconsistent structure systems are obviously resistant to the use of regular 
logical procedures. Two attitudes toward them can be recognized. According to one of 
them, such structure systems should be rejected on the basis of the fact that they do not 
represent any overall system. According to the other attitude, the local inconsistencies 
should be resolved by adjusting the given behavior functions in such a way that the new 
behavior functions are locally consistent and as close to the original ones as possible in 
some specific sense, usually in terms of the information distance. The resulting structure 
system is then used instead of the original system. 

Given a behavior structure system 

with probabilistic behavior functions xf (x e N q) that are locally inconsistent, the 
following is a possible formulation of the problem of resolving these inconsistencies: 

Determine behavior functions xfc of the same form as given functions Xf(xeNq ) 

such that the function 

(4.47) 

reaches its minimum subject to the constraints 

(4.48) 

for all x, yeNq , and 

(4.49) 

for all states Xc (xeNq ). Let me call this problem a problem of optimal resolution of local 
inconsistencies. 
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TABLE 4.17 
Solution to the Problem of Optimal Resolution 
of Local Inconsistencies for Behavior Functions 

Specified in Table 4.l6a 

VI V 2 IJ;ee) V 2 V3 2J;ee) 

Ie = 0 0 0.5208 2e = 0 0 0.3846 
0 0.1875 0 1 0.2404 

0 0.1042 0 0.1732 
0.1875 0.2018 

Equations (4.48) express the requirement that the resulting structure system be 
locally consistent. Statements (4.49) require that any state that is possible under the 
original formulation must not be rejected in the modified, locally consistent formu
lation; this requirement makes it possible to use the simple information distance D 
given by Eq. (4.40) or Eq. (4.42) in the objective function (4.47). 

Example 4.24. Consider the locally inconsistent structure behavior system with 
two elements whose behavior functions are specified in Table 4.16a. When the problem 
of optimal resolution of local inconsistencies is solved for these behavior functions, 
behavior functions lfc and 2fc specified in Table 4.17 are obtained. We can easily verify 
that these functions are locally consistent and that 

Interest in the problem of resolving local inconsistencies in structure systems has 
been shown only recently. At this time, the problem is methodologically undeveloped 
and a subject of active research. 

NOTES 

4.1. The relationship between wholes and parts enjoys rich coverage in the literature. A few 
representative references will help the reader, if interested, to get more information about the 
main issues involved [BAI, GOI LAI, LEI, TRI]. 

4.2. Holistic ideas can be found in the thinking of some ancient Greek philosophers, 
particularly Aristotle, and can even be traced back into the Chinese Book of Changes (l Ching). 

However, the methodological doctrine of holism is usually attributed to Jan C. Smuts [SM 1]. 
Reductionism is predominantly associated with science since about the sixteenth century, but its 
roots can also be found in thinking of some ancient Greek philosophers. The holistic view and a 
criticism of reductionism is extensively covered in the book Beyond Reductionism, edited by A. 
Koestler and J. R. Smythies [K02], as well as in Koestler's own book The Ghost in the Machine 
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[KOl]. Some claims of holism, particularly extreme holism, are critically analyzed by D. C. 
Phillips [PHI]. 

4.3. The general decomposition method for systems design, which is outlined in Section 4.5, 

is best exemplified in the literature by the area of switching circuits, i.e., systems with binary 
variables [CEl, 2, KL5]. A generalization to arbitrary discrete systems was developed by Givone 
[GIl]. An unorthodox decomposition method for systems with binary variables was proposed 
by Brown [BR8]. For continuous systems, functional equations are well covered in an extensive 

monograph by Aczel [AC3]. A comprehensive methodology that encompasses the whole process 
of systems design was developed and successfully applied by Wymore [WY2]. This methodology 
seems to be a good candidate for being integrated into the GSPS to deal with the' problems of 
systems design. 

4.4. The problems of determining reconstruction families from structure behavior systems 
have been studied for both probabilistic and possibilistic systems. For probabilistic systems, two 
methods based on matrix algebra were proposed, one developed jointly by Roger Cavallo and me 
[CA6], one by Bush Jones [JOl]. For possibilistic systems, a powerful method was developed in 
terms of fuzzy relation equations jointly by Masahiko Higashi, Michael Pittarelli, and me [HI4]. 

4.5. Reconstruction uncertainty, characterized by Eq. (4.31), and the associated identifi
ability quotient [Eq. (4.32)] are given extensive theoretical justification in the paper mentioned in 

Note 4.4 [HI4]. For probabilistic systems, the measure of reconstruction uncertainty should 

reflect several characteristics of the reconstruction family, including the number of overall states 
for which the probabilities are not unique, the number of degrees of freedom, their ranges, and 
the extent to which they are mutually interdependent. There are various ways in which these 
characteristics can be incorporated into a single measure, but none of them seems to show a clear 
superiority over the others in its intuitive appeal. Unless some measure with strong and universal 
intuitive appeal emerges, it is best to encourage the GSPS users to define their own measures and 
adopt one of the possible measures as a provisional default option. 

4.6. The principle of maximum entropy has been justified by at least three diverse 
arguments: 

(1) The maximum entropy probability distribution is the only unbiased distribution, i.e., the 
distribution that takes into account all available information, but no additional (unsupported) 
information (bias). This follows directly from the facts that (i) all available information (but 

nothing else) is required to form the constraints of the optimization problem, and (ii) the chosen 
probability distribution is required to be the one that represents the maximum uncertainty 
(entropy) within the constrained set of probability distributions. Indeed, any reduction of 
uncertainty is an equal gain of information. Hence a reduction of uncertainty from its maximum 
value, which would occur when any distribution other than the one with maximum entropy were 
chosen, would mean that some information was implicitly added. 

This argument of justifying the maximum entropy principle is covered in the literature quite 
extensively. Its best and most thorough presentation is perhaps given in a paper by E. T. Jaynes 
[JA2], which also contains an excellent historical survey of related developments in probability 
theory, and in a book by R. Christensen [CH5]. Both of these publications also contain extensive 
bibliographies, which cover the literature relevant to the principle of maximum entropy almost 
completely. 

(2) It was shown by E. T. Jaynes [JAl], strictly on combinatorial grounds, that the 
maximum entropy probability distribution is the most likely distribution. Given a reconstruction 
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hypothesis, each element of the reconstruction family of that hypothesis could have been 
generated by some number of actual data sets. The largest number of possible data sets that are 
mutually comparable and compatible with the given reconstruction hypothesis are those with the 
maximum entropy overall probability distribution. 

(3) It was shown by J. E. Shore and R. W. Johnson that the principle of maximum entropy is 
deductively derivable from the following consistency axioms for inductive reasoning [SH5]: 

• uniqueness: the result should be unique; 
• invariance: the choice of coordinate system (permutation of variables) should not matter; 
• system independence: it should not matter whether one accounts for independent 

information about independent systems separately in terms of marginal probabilities or 
together in terms of joint probabilities; 

• subset independence: it should not matter whether one treats an independent subset of 
system states in terms of separate conditional probabilities or in terms of full system 
probabilities. 

The rationale for choosing these axioms is expressed by Shore and Johnson as follows: any 
acceptable method of inference must be such that different ways of using it to take the same 
information into account lead to consistent results. Using the axioms, they derive the following 
proposition: given some information in terms of constraints regarding the probabilities to be 
estimated, there is only one probability distribution satisfying the constraints which can be 
chosen by a method that satisfies the consistency axioms; this unique distribution can be attained 
by maximizing entropy (or any other function that has exactly the same maxima as the entropy 
function) subject to the given constraints. 

In addition to these classical arguments, which are extensively covered in the literature, a 
novel argument justifying the maximum entropy principle, first suggested in 1981 [CA6], is based 
on properties of man-made structure systems. As argued at the end of Section 4.8, every man
made structure system is associated with a unique overall system-the one represented by its 
unbiased reconstruction. That is to say, if a probabilistic structure system is given and we know 
that it is a man-made system, the maximum entropy reconstruction is the only one possible. Or, in 
other words, it is not possible to design a real-world probabilistic structure system whose actual 
reconstruction is different from the maximum entropy reconstruction. It is understood, of 
course, that systems are designed in the usual way to function in any possible environment. 
However, if a system were designed to function only in a particular environment, the argument 
would still hold. In this case, the join procedure would involve not only elements of the designed 
structure system but its environment (known in this case) as well. 

For possibilistic systems, the counterpart of the maximum entropy principle is a principle of 
maximum U-uncertainty. Although its derivation from relevant consistency axioms has not been 
demonstrated as yet, it is justified by possibilistic counterparts of the other arguments. In 
particular, it is known that the possibilistic join procedure leads to the maximum uncertainty, i.e., 
unbiased reconstruction [CA9]. 

4.7. Two of my previous papers, coauthored with Roger Cavallo, contain the basic results 
regarding the relationship between the results of the join procedures and either the maximum 
entropy reconstruction [CA6] or the maximum U-uncertainty reconstruction [CA9]. In fact, it 
was proved first by P. M. Lewis II [LE2] that the probabilistic version of the basic join procedure 
leads to the maximum entropy reconstruction when applied to probabilistic structure systems 
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that are consistent and represented by the L-structures. The convergence of the iterative join 
procedure to the maximum entropy reconstruction was proved by D. T. Brown [BR 7]; the proof 
is also well covered in a book by Bishop et al. [BI 1]. The proof that no iterative join procedure is 
needed for possibilistic systems is included in one of my papers mentioned in this note previously 
[CA9]. 

4.8. The concepts of general symmetric distances that characterize information closeness 
between arbitrary possibility or probability distributions were developed by M. Higashi and me 
[HI3]. In their general form, they are essential for the simulation experiments described in 
Section 4.9. In their special forms (4.40) and (4.42), they measure information loss (or gain) 
involved between pairs of comparable probability or possibility distributions, respectively. 

4.9. In mathematical terminology, G-structures are irredundant hypergraphs. A hypergraph 
is defined as a family of subsets of a given set (say set N. in our case) that satisfies the covering 
requirement and does not contain the empty set [BE5]. 

4.10. Refinement and coarsening procedures for various classes of structures, as well as 
procedures for preventing the generation of duplicate structures, are described in more detail 
than in this chapter in two of my papers [CAS, KLl6]. 

4.11. A procedure for calculating IBt.iil = lre.iil was developed by Polya [P02]. All 
isomorphic classes of undirected graphs for n ~ 6 are listed in a book by Harary [HAS]; Sloane 
[SLl] gives the numbers I Bt.ii I for n :s; 15. 

4.12. The numbers I 'S: I (Table 4.12) are given in Sloane's Handbook [SLl] for n:S; 7 
(sequence No. 1439), together with relevant references. These are the only values of I 'S.+ I known 
at this time; no formula for calculating I 'S: I has been found. It is known, however, that I 'S: I is 
equal to the number of monotone Boolean functions of n variables. The numbers I 'S. I can be 
calculated by the formula 

which is based on the combinatorial principle of inclusion and exclusion. It is also known that 
I 'S.+ /11 = 2· -1 and I 'S./II = 2" - n. 

4.13. Behavior function used in Example 4.20 (Table 4.14a) is based o.n data collected for a 
study on premarital contraceptive usage; they are analyzed in a book by Fienberg [FIl], where 
the original source is given (p. 121). 

4.14. The general reconstruction problem was first recognized by W. Ross Ashby [AS4]. He 
suggested the concept of cylindrance for multidimensional relations (i.e., crisp possibilistic 
systems in our terminology) and developed an algorithm through which it is possible to determine 
whether a given relation of dimension n can be reconstructed from its projections of a particular 
dimension k < n. The reconstruction, if possible, is accomplished by the set intersection of 
extensions (cylinders) of all k-dimensional projections of the given relation. It can easily be shown 
that the Ashby procedure is a special case of the join procedure [CA6]. Ashby (jointly with R. F. 
Madden) was also first in recognizing the general identification problem discussed in Section 
4.6 [MA2]. 

One of the Ashby's main contribution is that he recognized the great significance of the 
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reconstruction and identification problems for systems inquiries, problems that had been largely 
neglected before him. His work on these problems, which is rather restrictive from the 
methodological point of view, was a primary stimulus for my own work in this direction. My first 
ideas about a more comprehensive approach to the reconstruction problem developed in the mid-
1970s, during my stay at the Netherlands Institute for Advanced Study in Wassenaar [KL 7]. My 
work on the reconstruction problem and, later, also the identification problem continued in 
various directions and is still on-going. Results, often produced in cooperation with some of my 
colleagues and assistants, are published in a series of papers [CA5-7, CA9, KLlO, KLl2, 
KLl4-16]. The reconstruction problem has also been investigated by Gerrit Broekstra [BR3-5J, 
Roger Conant [C05-7], Klaus Krippendorff[KR2], and others [DU4]. Bush Jones contributed 
to the identification problem [JOl]. 

The best source of information regarding the status of reconstructability analysis in the early 
1980s is a Special Issue on Reconstructability Analysis of the International Journal of General 
Systems (Vol. 7, No.1, 1981, pp. 1-107), which also contains an extensive bibliography. 

4.15. Initial and rather limited simulation experiments regarding reconstructability analysis 
were performed in 1976 and 1977 by Hugo Uyttenhove [KLl4, 15]. More comprehensive 
experiments, which are described in Section 4.9, have been performed since fall 1981 by Abdul 
Hai [HAl J. They are still in progress, particularly those of the general form outlined at the end of 
Section 4.9. 

4.16. The reconstruction principle of inductive inference (Section 4.10) was presented first at 
my Presidential Address at the 27th Annual Meeting of the Society for General Systems Research 
in Washington, D.C., January 5-9, 1982 [KLl3]. 

4.17. The problem of resolving local inconsistencies in systems (Section 4.11) has been 
studied by N. Rescher [RE3, RE6, REll]; it is fair to say that methods for dealing with this 
problem have not been sufficiently developed as yet. 

4.18. The question of the effect of different degrees of data quantization on reconstruct
ability analysis of probabilistic systems was investigated by R. E. Valdes-Perez and R. C. Conant 
[VAl]. The following quote summarizes the conclusions of this investigation: 

Assuming a probabilistic characterization of the system under study, we find that 
although there is an incremental benefit from quantizing data more finely, since by 
so doing a higher proportion of original information is retained, this benefit 
decreases rapidly and becomes nearly insignificant for Q (number of states per 
variable) greater than about 4 or 5. On the other hand, quantizing more finely carries 
a very rapidly accelerating cost in the computer space and time needed to carry out 
reconstructability analysis. These factors seem to indicate that ternary and higher 
quantization is significantly better than binary, while Q greater than about 3 or 4 
bears a much higher computer cost and brings only marginal benefits. 

These conclusions, which are based on a mathematical analysis, are virtually the same as those 
based on the simulation experiments described in Section 4.9. 
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EXERCISES 

4.1. Consider an overall system of n variables (n ~ 3), each of which has k states. Determine for 
some small values of k, say k = 2,3,4, the value ofn for which it becomes less economical (in 
terms of the required memory cells) to store the overall system than 
(a) to store all its two-variable subsystems; 
(b) to store all its three-variable subsystems. 

4.2. Let the notation introduced in Table 4.4 be used for probabilities of overall states of 
behavior systems with three binary variables. Given any probability distribution 
{PiliENo.7 }, show that 
(a) it is fully reconstructable from subsystems {v I' v2} and {v2, v3} if and only Po P5 = PI P4 

and P2P7 = P3P6; 
(b) it is fully reconstructable from subsystems {VI' v3} and {v 2, v3} if and only if POP6 

= P2P4 and PIP7 = P3P5' 
(c) it is fully reconstructable from subsystems {VI' v2} and {VI' V3} if and only if POP3 

= PI P2 and P4P7 = P5 P6' 
4.3. Determine reconstruction families and values of the identifiability quotients for 

(a) all members of the solution set in Example 4.19; 
(b) reconstruction hypotheses 2, 7, and 10 in Example 4.19; 
(c) all reconstruction hypotheses of the possibilistic overall system whose behavior 

function is specified in Table 4.ISa. 
4.4. Develop some reasonable identifiability quotient for probabilistic behavior systems. 
4.5. Determine reconstruction families and values of the identifiability quotient of your choice 

(Exercise 4.4) for 
(a) all members of the solution set in Example 4.20; 
(b) hypothesis 3 in Example 4.20; 
(c) hypothesis IS in Example 4.21; 
(d) a structure systems with the same elements as those specified in Table 4.3 except that 

"f(ke) = 0.25 for all kEN 3' 

4.6. Prove that min [If(a, b), 2f(elb) = min [If(a, b), 2f(b, e)], where If and 2fare possibility 
distribution functions defined on the Cartesian products A x Band B x C, respectively. 

4.7. Let f and fh denote the behavior functions of an overall system and its unbiased 
reconstruction from a reconstruction hypothesis h, respectively. 
(a) Prove thatfh (e) = 0 impliesf(e) = 0 for all eEC when the systems are probabilistic. 
(b) Construct a counter example to demonstrate that it is not true for probabilistic systems 

thatf(e) = 0 impliesfh = O. 
(c) Prove thatfh(e) ~f(e) for all eEC when the systems are possibilistic. 

4.8. Develop procedures for determining all immediate coarsenings of 
(a) a given G-structure; 
(b) a given C-structure in the appropriate set 'Cn ; 

(c) a given P-structure in the appropriate set 9 n • 

4.9. Utilizing the similarity with the combined ordering defined by Eqs. (3.72) and (3.106), 
define formally the combined ordering associated with the reconstruction problem. 
Compare properties of the individual orderings, preorderings, and the combined orderings 
in the three problem types. 

4.10. Utilizing the similarity with the solution sets defined by Eqs. (3.73) and (3.107), define 
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formally the solution set (the set of admissible reconstruction hypotheses) for the 
reconstruction problem. 

4.11. Assume that the RC-procedure is applied to several C-structures at the same level of 
refinement. Develop a procedure which, when appropriately combined with the RC
procedure, would prevent a generation of duplicate C-structures. Show also how these two 
procedures must be combined. 

4.12. Calculate the unbiased reconstructions and distances for 
(a) reconstruction hypotheses 1, 2, 3, 5, and 6 in Example 4.20; 
(b) the reconstruction hypothesis with all two-variable subsystems In Example 4.20 

(assume l\ = 0.00(5); 
(c) all members of the solution set and reconstruction hypothesis 9 in Example 4.21. 

4.13. Utilizing the result of Exercise 4.l2(b), draw a plot of the dependence of DI on I for the 
overall system in Example 4.20. 

4.14. Consider a modification of Example 4.19 in which only C-structures are of interest, but it is 
not required that the reconstruction be perfect. 
(a) Determine the solution set for this modification. 
(b) Draw a plot of the dependence of DI on I for this modification. 

4.15. Determine all G-structures (not only isomorphic equivalence classes) in several 
r-equivalence classes in G 4, say those represented by the fully connected graph and a graph 

without one edge. 
4.16. Utilizing results of Exercise 4.8, determine the structure neighborhood of 

(a) C-structures 123/234/456, 12/23/34/14, 123/234/345/456/156, and 
123/234/345/456/156/135/246; 

(b) P-structures 14/15/45/24/13/35/25/12/ and 12/13/15/24/25/45; 
(c) G-structures 13/14/125/245/345, 12/24/25/135/145, and 1234/35/45/346; 
(d) the same G-structures as in (c), but under the assumption that the structure 

neighborhood is restricted to the same r-equivalence class. 
4.17. Determine the number of structures isomorphic to each of the structures specified in 

Exercise 4.16. Check also some of the numbers # g of isomorphic structures given in the 
tables of refinement lattices in Appendix D. 

4.18. Using Eq. (D.l) in Appendix D, determine 
(a) the number of immediate predecessors of each C-structure in the individual 

i-equivalence classes depicted in Figure 4.20 in the other i-equivalence classes (label the 
connection in the diagram by the number of predecessors of the respective type); 

(b) the number of immediate predecessors of each structure in the i-equivalence classes 
g = 79-82 of <§s (Appendix D) in the i-equivalence classes g = 73-78. 

4.19. Supplement tables of lattices (<§ 3/i, ::;:;) and (<§ 4/i, ::;:;) in Appendix D by the relevant 
information regarding predecessors. 

4.20. Determine all admissible reconstruction hypotheses for the possibilistic behavior systems 
whose behavior functions are specified in Table 4.18a, b. Draw a plot of D, versus I for each 
of the systems. 

4.21. Determine reconstruction families and values of the identifiability quotient for all members 
of the solution set in Exercise 4.20 and compare them with corresponding results of one 
reconstruction hypothesis that is not admissible. 

4.22. W. Ross Ashby proposed a procedure for determining the unbiased reconstruction of 
multidimensional relations (or crisp possibilistic systems in our terminology) from their 
projections. His procedure is based on the concept of a cylindric extension of a projection 
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with respect to variables of the overall relation that are not involved in it. Let [kf r S - kS] 
denote the extension of a projection represented by a possibilistic behavior function (crisp) 
kf Then, the extension is a function from the set C of all overall states into {O, I} such that 

eft S _ kS] (c) = {I, if kf(kC~ = 1 for some kC-< c, 
0, otherwIse. 

Given a reconstruction hypothesis h with projections kf (k E N q), the Ashby procedure can be 
expressed either by the formula 

or by the formula 

fh(C) = min efr S-kS] (c) 
k 

fh (c) = max [kf r S - kS] (c), 
k 

where t'j(kC) = 1 - kf(kC). Using either of the formulas, determine the unbiased reconstruc
tions for all reconstruction hypotheses of each system specified in Table 4.18 and compare 
the results with the reconstructions obtained by the join procedure. 

4.23. Determine 
(a) all admissible reconstruction hypotheses for the probabilistic behavior system specified 

in Table 4.l8c and draw the plot of D, versus I; 

TABLE 4.18 
Illustrations to Exercises 

(a) (b) 

VI V 2 V3 ftc) VI V 2 V3 ftc) 

c=o 0 0 0.8 c=o 0 0 
0 0 2 1 0 0 
0 1 1 0.6 0 0 
0 1 2 1 0 

0 0 0.7 
0 0.8 
1 0.6 
2 1 

(e) (d) 

VI V2 V3 ftc) VI V 2 V3 V4 ftc) 

c=O 0 0 0.1 c=O 0 0 0 0.1 
0 0 1 0.4 0 0 0.2 
1 0 0 0.05 0 1 1 1 0.1 

0 1 0.2 0 0 0 0.1 
0 0.25 0 0 0.1 

0 1 0.1 
1 0 0.2 

1 0.1 



www.manaraa.com

292 CHAPTER 4: STRUCTURE SYSTEMS 

(c) all admissible reconstruction hypotheses that are based only on C-structures and do not 
exceed the distance of 0.1 for the probabilistic behavior system specified in Table 4.18d. 

4.24. Using any of the probabilistic or possibilistic methodological distinctions, determine all 
admissible reconstruction hypotheses for the memory less systems with three binary 
variables defined on various populations whose frequency distributions are specified in the 
first part of Table 4.19a. The systems are based on studies published in the literature. The 
following are brief characterizations of the studies and relevant references, where the 
systems and experimental circumstances are fully described. States of variables are given in 
the order 0, 1; variables are listed in the order VI' V 2' V 3. 

VI 

0 
0 
0 
0 

VI 

0 
0 
0 
0 
0 
0 
0 
0 

(a) Epidemologic investigation of a food poisoning outbreak [BI1, p. 90]. Support: 304 
persons attending a picnic; variables: illness (presence or absence), crabmeat (eaten or 
not eaten), potato salad (eaten or not eaten). 

(b) Response (favorable or unfavorable) to three different drugs observed on 46 persons 
[BI1, p. 308]. 

TABLE 4.19 
Frequency Distributions of Systems in Exercises 4.24 and 4.25 

Exercise 4.24 
V 2 V 2 (a) (b) (c) (d) (e) (f) (g) 

0 0 120 6 84 11 86 2 
0 1 4 2 8 4 2209 35 16 
1 0 22 2 22 2 48 32 1 
1 0 0 6 2 6 239 11 6 
0 0 80 16 25 12 0 73 48 
0 31 4 12 1 111 70 8 

0 24 4 7 3 72 61 36 
23 6 14 2074 41 6 

Exercise 4.25 
V 2 V3 V4 (a) (b) (c) (d) (e) (f) 

0 0 0 12 187 350 554 387 20 
0 0 1 16 256 150 281 36 2 
0 1 0 27 15 60 87 876 9 
0 1 1 32 42 112 49 250 2 
1 0 0 8 42 26 338 383 6 
1 0 1 22 34 23 531 270 1 

1 0 22 40 19 56 381 4 
1 1 30 62 80 110 1712 1 

0 0 0 47 177 1,878 97 955 38 
0 0 1 14 194 1,022 75 162 7 
0 1 0 46 14 148 182 874 24 
0 9 27 404 140 510 6 

0 0 14 30 111 85 104 25 
0 1 23 52 161 184 176 6 

0 25 63 22 171 91 23 
1 15 121 265 458 869 42 
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(c) Factors effecting tromboembolism [BI1, p. 112]. Support: 116 women; variables: 

tromboembolism (absence or presence), smoking (no or yes), use of oral contraceptives 
(no or yes). 

(d) Response of lymphoma patients to combination chemotherapy by sex and cell type 

[BI1, p. 148]. Support: 30 patients; variables: type of disease (modular, diffuse), sex 
(male, female), response (no, yes). 

(e) A study of death penalties in Florida in 1973-1979 [KR2, p. 75]. Support: 4,764 murder 
cases; variables: killer (black, white), victim (black, white), penalty (death, other). 

(f) Structural habitat categories of Anolis lizard of Bimini [FIl, p. 27]. Support: 409 

lizards; variables: species (sagrei adult male, distichus adult and subadult), perch height 
( :s; 4.75 ft, > 4.75 ft), perch diameter (:s; 4 in., > 4 in.). 

(g) A study of diabetic patients [FI1, p. 53]. Support: 123 patients; variables: age at onset 
( < 45, ~ 45), family history of diabetes (no, yes), dependence on insulin injections (no, 
yes). 

4.25. Repeat Exercise 4.24 for systems with four binary variables whose frequency distributions 

are specified in the second part of Table 4.19. Variables are listed in the order VI' V2 , V3 , V4 • 

(a) A study of patients receiving psychiatric care [FI1, p. 90]. Support: 362 patients, 
variables: validity (psychasthetic, energetic), solidity (hysteric, rigid), stability (ex
troverted, introverted), acute depression (no, yes). 

(b) A study of the nature of sexual symbolism [FI1, p. 89]. Support: 1,356 male subjects; 
variables: actual anatomical measuring (male, female), responses based on exposure 
rates 1/1000 or 1/5 second (male, female), purpose of experiments (not explained, 
explained). 

(c) An investigation of car accidents [FI1, p. 90]. Support: 4,831 car accidents; variables: car 

weight (small, standard), driver ejected (no, yes), severity (not severe, severe), accident 

type (collision, rollover). 
(d) A study of the attitudes toward the "leading crowd" among schoolboys [G03, p. 424]. 

Support: 3,398 schoolboys; variables: membership (out, in) and attitud toward 

(unfavorable, favorable) the "leading crowd" during first interview and second 
interview. 

(e) Preference of World War II recruits for location of training camp [B11, p. 138]. 
Support: 8,036 soldiers; variables: race (black, white), region of origins (north, south), 
location of present camp (north, south), preferred location (north, south). 

(f) Particularistic versus universalistic values in role conflict [G03, p. 404]. Support: 216 
persons; variables represent four different situations of role conflict; their states 
represent tendencies toward particularistic or universalistic values. 
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No single frame either explains 
Nor foretells the whole continuity
The picture of the caterpillar 
Does not foretell the butterfly, 
Nor does one picture of a butterfly 
Show that a butterfly flies. 

-R. BUCKMINSTER FULLER 
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5.1. CHANGE VERSUS INVARIANCE 

The scientist does not so much seek descriptions of the changeless as changeless 
descriptions of the changing. 

-G. SPENCER BROWN 

One of the most fundamental human capabilities, perhaps the most fundamental, 
is the capability of recognizing differences. Its most primitive manifestation is the making 

of distinctions by human beings, as well depicted by Goguen and Varela [GO!]: 

A distinction splits the world into two parts, "that" and "this," or "environment" and 
"system," or "us" and "them," etc. One of the most fundamental of all human 
activities is the making of distinctions. Certainly, it is the most fundamental act of 
system theory, the very act of defining the system presently of interest, of 
distinguishing it from its environment. 

Distinctions coexist with purposes. A particularly basic case is a system defining 
its own boundaries and attempting to maintain them; this seems to correspond to 
what we think of as self-consciousness. It can be seen in individuals (ego or identity 
maintenance) and in social units (clubs, subcultures, nations). In such cases, not only 
is there a distinction, but an indication, that is, a marking of one of the two 
distinguished states as being primary ("this," "I," "us," etc.); indeed, it is the very 
purpose of the distinction to create this indication. 

A less basic kind of distinction is one made by a distinction for some purpose of 
his own. This is what we generally see explicitly in science, for example, when a 
discipline "defines its field of interests," or a scientist defines a system which he will 
study. 

In either case, the establishment of system boundaries is inescapably associated 
with what we will call a cognitive point of view; ... in particular, it is associated with 
some notion of value, or interest. It is also linked up with the cognitive capacities 
(sensory capabilities, knowledge background) of the distinctor. Conversely, the 
distinctions made reveal the cognitive capabilities of the distinctor. It is in this way 
that biological and social structures exhibit their coherence, and make us aware that 
they in fact have cognitive capacities or that they are "conscious" in some degree. 

The recognition of differences is thus closely connected with the making of 
distinctions, and is of two types. We can recognize either that two things are different or 
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that the same thing has changed with time (or, using the GSPS terminology, with 
respect to the relevant backdrop or the associated support). The two meanings are 
intimately interrelated and complement each other. Those aspects of things that are 
viewed as permanent (invariant, constant) are captured by the first meaning; those 
viewed as temporary (varying, changing) are in the domain of the second one. 

The importance of the notion of change, which is one of the derivatives of the 
notion of difference, has been expressed in literature in many imaginative ways. For 
example, Heraclitus, the ancient Greek philosopher, expressed it by his famous 
statement 

Nothing is permanent except change; 

John Wilmot, a seventeenth century British poet, conveyed a similar message in one of 
his poems: 

Since 'tis Nature's law to change, 
Constancy alone is strange; 

and Edmund Burke, a British statesman, expressed the same sentiments in terms of 
politics in his Speech on American Taxation in 1774: 

A state without the means of some change is without the means of its conservation. 

Regardless of whether or not we subscribe to the view expressed by Heraclitus, the 
fact remains that we have a fundamental need to view certain things in our environment 
as invariant, at least on pragmatic grounds. If this were not possible, we would not be 
able to communicate, as there would be no identifiable entities, and, indeed, we would 
not even be able to act in any meaningful way, as there would be nothing in our 
environment we could take for granted. 

There are several reasons why we can recognize invariance in our environment. 
One obvious teason is that certain things in our environment change at a considerably 
slower rate than the rate of our perception, cognition, and acting. Such changes are thus 
negligible for our practical purposes, or we are not even aware of them. Another reason 
is that some changes occur at a level of resolution that is beyond the human scale. We do 
not notice such changes and, unless they are manifested in some fashion within our 
scale, they are irrelevant to us. 

We can also recognize invariance of a different sort, one associated with the process 
of change rather than the thing which changes. In the GSPS framework, this kind of 
invariance is exemplified by the notion of the generative system. Its variables are subject 
to changes, but the manner in which they change (as expressed by its behavior or ST
function) is support invariant, i.e., it is permanent (changeless) within the support set 
considered. 

The search for invariances is the very essence of science, as is well described in this 
delightful quote from a book by G. Spencer Brown [BR9]: 
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Science is concerned with the discovery of constants: it is the study of the changeless. 
If I drop a bomb from my top storey window, it will fall to the ground with an ever
increasing speed. This change of speed is anathema to the scientist. He may not rest 
content until he has found a way of picturing it changelessly. In this case he has not 
far to seek. The speed of the bomb may change, but the rate at which it changes 
(called the acceleration) does not. The function 32 feet per second per second is a 
constant which describes not only the behaviour of my bomb, but also that of other 
bombs dropped in the vicinity. 

We talk of the function 32ft per sec2 as if it were absolutely constant, but a little 
reflection shows that it is not so. The mass of the earth is slowly increasing as it picks 
up meteorites and interstellar dust. We may thus expect g, the acceleration due to 
gravity, to increase as time goes on. If we formalize this increase in terms of a further 
"constant," we have no reason to suppose that this further "constant" may not itself 
be changing. Our attempt at a perfect description of the acceleration due to gravity 
has ended in a regress. It may seem that the regress could be broken by the following 
means. We suppose that statements involving the concept g are statements 
dependent on given masses, distances, and other factors known to be "relevant." 
Given all the relevant factors, we are in a position to formulate a constant which 
does not change. But the problem is now seen to be purely linguistic; any change in 
the constant made necessary by observation and experiment can be blamed upon 
our faulty assessment of the relevant conditions under which the constant should be 
observed. In other words there is always a "real" constant to which our observations 
tend: it just happens that when we think we have found it we discover afterwards 
that what we have found is only an approximation of it. 

This latter way of talking is analogous to the philosophy of the thing-in-itself, 
or "the reality beneath the appearance." It could be called "the constant beyond the 
approximation." Such an assumption is indeed part of the scientific attitude and its 
convenience for some purposes remains undoubted. We shall discuss its usefulness 
later, but for the moment we must emphasize that the laws of nature are merely the 
descriptions we have made of structures which have been found to change only very 
slowly. We have in fact no evidence for the existence of any structure which does not 
change at all .... 

Exactly what we notice can plausibly be ascribed to how, and especially how 
fast, we ourselves can change. We notice, for example, things which change as slowly 
as or more slowly than we do, but not in general things which change much more 
quickly. Thus the faster we can change, the more we can notice. 

If we take a cinematograph of a plant at, say, one frame a minute, and then show 
this moving picture speeded up to 30 frames a second, the plant appears to behave 
like an animal. When something is placed near it, it clearly perceives it and reacts to 
it. It is obviously a sentient being. Why, then, does it not ordinarily appear 
conscious? The answer is, perhaps, because it thinks too slowly. To beings which 
reacted eighteen hundred times as quickly as we reacted, we might appear as mere 
unconscious vegetables. Indeed, the beings who moved so quickly would be justified 
in calling us unconscious, since we should not normally be conscious of their 
behaviour. Such glimpses of it as might appear from time to time would mean 
nothing. A tree can no more perceive me walking past it than I can see a bullet flying 
past me. I might perceive certain events in the wake of the bullet, such as a broken 
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arm; and similarly, if my passage were destructive enough, the tree might eventually 
perceive certain events in my wake, such as a broken branch. But what is fast for a 
tree is slow and boring for me, whereas what is normal speed for me is something out 
of this world for a tree .... Anyone who could move infinitely fast would be in a 
position to know everything, because to him nothing would move. He would have 
an infinite time in which to learn it. And if he were also allowed to move bits of the 
universe himself, he would not only be omniscient, but also omnipotent, since he 
would have as long as he liked to beetle about altering things. 

We have seen that science seeks to reduce change to an unchanging formula. 
Wherever there has been change, such formulae can always be found; but they do not 
always apply to the future. When the change itself changes, we need a new formula. 

We are now ready to differentiate between the task of the historian and that of 
the scientist. The scientist, we have seen, is concerned with recording in a changeless 
way phenomena which are still changing; whereas the historian as such is concerned 
only with recording changes that have already stopped. The historian is not 
concerned to find a formula which will work from henceforward for all time. If he 
ever found such a formula, no more records would be necessary and he would lose 
his job. It is not history which repeats itself, but science. The scientist begins by 
looking at the welter of change and fixing in formulae whatever parts of it he can. 
History is what is left over after the scientist has taken his pick. 

History is therefore more fundamental than science. It is our first appreciation 
of things. But its study is not urgent. That which does not change, such as the past, is 
not dangerous. As such, it cannot harm us. But we must beware of what changes. 
And in order that we may adapt ourselves to it, our sense must be quick to sense it. 

It is clear that the search for invariances, which is so basic to science, should be one 
of the main capabilities of the GSPS. Some aspects of support invariance are associated 
with generative systems and structure generative systems. These are discussed in 
Chapters 3 and 4, respectively. Such aspects are only special cases of a more general 
concept of support invariance, as discussed in the next section. 

5.2. PRIMARY AND SECONDARY SYSTEMS TRAITS 

The law of identity does not permit you to have your cake and eat it, too. 
-AYN RAND 

To exist means to have an identity, and that, in turn, means to have an identifier. A 
system is given its identity when some of its traits are defined. Let these traits, which 
form an identifier of the system, be called its primary traits. It is then natural to call any 
other traits of the system, which are not involved in the identifier, its secondary traits. 

The set of all primary traits of a system thus forms its definition. It is a general 
property of the epistemological hierarchy of systems that the set of primary traits 
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associated with a particular level IS a subset of the set of primary traits associated with any 
higher level. This is illustrated for neutral systems up to the level of structure behavior 
systems in Figure 5.1. The figure can be easily modified to structure data systems or 
structure source systems by excluding the traits that are not included in their definitions 
(masks, behavior functions, or data functions); a modification to directed systems is 
trivial. 

A necessary condition for dealing with a system in some problem situation is that it 
keeps its identity. This means that its primary traits are required to remain unchanged. 
No such restriction is, of course, required for secondary traits. For example, a given data 
system may be supplemented by a behavior function derived from its data. This function 
is obviously a trait of the data system. Since, however, there are many different behavior 
functions that can be derived from the same data system for different masks and different 
ways of expressing the constraint among variables, the behavior function cannot be 
employed to identify the data system. It is its secondary trait and, as such, it is allowed to 
change. We may switch from one behavior function to another and that does not change 
the identity of the data system. The example can also be inverted. A given behavior 
system can generate different data sets for different initial conditions. Each of these data 
sets is a secondary trait of the behavior system. Regardless of which of them is under 
consideration, the identity of the behavior system remains unchanged. 

Figure 5.1. Subset relationship of pri
mary traits in the epistemological 
hierarchy of systems. 
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When dealing with a system, it is a common practice to redefine it, at an appropriate 
stage of the problem-solving process, in the sense that some of its secondary traits are 
accepted as primary traits. In empirical investigation, for example, the system is initially 
defined as a source system and this definition is maintained during the data-gathering 
stage. When the investigator becomes confident that the data obtained are sufficient to 
properly characterize the variables of the source system, he may accept the data array as 
a primary trait. This means that he redefines the source system, making it a data system. 
Such a change represents an inductive step because it results from an inductive act based 
on assumptions such as, for example: any state pattern that it is possible for the variables 
to form is among the patterns included in the data or it can be derived from them. The 
decision to redefine the system from a source system to a data system reflects in this case 
the investigator's belief that the information contained in the data is sufficient for the 
purpose of the investigation. Factors that contribute to forming this belief include not 
only the data, but also the purpose of the investigation, the envisioned manner in which 
the data will be processed, a comparison with similar investigations performed 
previously, as well as subjective qualities of the investigator (experience in the area of 
investigation, intuition, and the like). 

After the source system is redefined as a data system, the investigation becomes 
theoretical. The first objective is to find a generative system that will adequately 
represent the data system. Each of the behavior or ST-functions that are derived from 
the data for different masks is a secondary trait of the data system. Once the investigator 
develops sufficient confidence in anyone of them, he may accept it as a primary trait and 
thereby redefine the data system as a generative system. This again involves an inductive 
step because the support-invariant nature of the accepted behavior or ST-function 
extends the claims made by the generative system beyond the range of the given support 
set as well as to different initial conditions. Similarly, the generative system can be 
redefined as an appropriate structure generative system, in another inductive step, after 
its reconstruction properties have been adequately analyzed. 

Systems are also redefined in the process of systems design. Assume that the aim is 
to implement a given behavior system by a structure system that consists of specific 
types of elements and satisfies some given requirements (objectives, constraints). Traits 
of prospective structure systems that are determined during the design process are 
viewed as secondary traits. They do not change the identity of the given behavior system; 
its source system, mask, and behavior function are kept as the only primary traits during 
the entire course of the design process. The problem often results in several structure 
systems. Once one of them is accepted, the behavior system may be redefined as a 
structure behavior system; the latter then serves as a basis for the implementation ofthe 
design. 

Primary traits, as a means of identifying a system, must be completely known and 
support-invariant. No such requirements are imposed upon the secondary traits. They 
may be completely unknown or known only partially, and need not be support 
invariant. If it happens that a primary trait of a system changes, then, by definition, the 
system loses its identity and a new system emerges. On the other hand, the identity ofthe 
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system is not affected by a change in any of its secondary traits. For example, while a 
source system is not affected by the amount of data available, a particular data system 
changes when some data are excluded from it or added to it. Similarly, a ST -system does 
not change when its current state is replaced by another state or when a structure system 
by which it is implemented is replaced by another structure system that implements it. 

Support invariance is one of the characteristics of behavior or ST -functions. In this 
context, the notion of invariance refers strictly to a specific support set, which is defined 
as a part of the source system involved. It is sometimes desirable, however, to use this 
notion also in a localized sense, with respect to a subset ofthe given support set. It seems 
appropriate to refer to such invariance as local invariance or subinvariance. 

Consider now a set of behavior functions defined in terms of the same source 
system, but each of them only locally invariant and, consequently, insufficient to 
characterize the variables (and generate their states) within the entire support set 
specified by the source system. As such, the behavior functions cannot be used as 
primary traits of a single behavior system. In principle, however, they can be integrated 
into one larger system. That requires, of course, that we are able to describe a procedure 
by which the behavior functions replace each other within the support set. Let such a 
procedure be called a replacement procedure. 

If some behavior functions whose support invariance is only local are integrated 
into one system by a proper replacement procedure, their support invariance can be 
extended, for convenience, to the whole support set. Such an extension has no effect on 
the integrated system since the replacement procedure prohibits, in any event, the use of 
any of the individual behavior functions outside of its domain of local support 
invariance. Hence, we can view the integrated system, in a convenient manner, as a set of 
behavior systems and a replacement procedure. 

The method suggested here of integrating behavior systems into a larger system can 
be applied to other types of systems as well. Various categories of integrated systems of 
this kind are introduced, formalized, and discussed in the next section. 

5.3. MET ASYSTEMS 

Natural phenomena appear meaningful to us not only when we interrelate their 
momentary existences but also when we synthesize the temporal changes among 
them from a certain viewpoint. 

-AMOS IH TIAO CHANG 

One way of integrating several compatible systems into one larger system is to form 
a structure system according to the rules described in Chapter 4. Another way of 
integrating systems is to define an appropriate replacement procedure for them, as 
suggested in the last section. Let integrated systems of the latter kind be called 
metasystems. 
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The term "metasystem" is based on the prefix "meta," which is of Greek origin. It 
has three major meanings in Greek: 

i. "meta X" is a name of something that occurs after X, i.e., X is a prerequisite for 
meta X; 

ii. "meta X" indicates that X changes and is a general name of that change; 
iii. "meta X" is used as a name for something that is above X in the sense that it is 

more highly organized, of a higher logical type, or viewed from a larger 
perspective (transcending). 

We can see that the term "metasystem," when used for systems in which several systems 
are integrated through appropriate replacement procedures, incorporates all three of 
these meanings. Clearly (i) a meta system can be defined only after some other types of 
systems are defined; (ii) it is a system that describes a change-a replacement of one 
system by another; and (iii) it is above the individual systems-its replacement 
procedure makes it more than just a collection of the individual systems. The name 
"meta system" is thus terminologically sound. 

Metasystems are introduced basically for the purpose of describing changes, within 
a given support set, in those systems traits that are defined as support invariant. Such 
traits include sets of variables and the associated state sets and channels, behavior and 
ST-functions, and couplings in structure systems. Metasystems can be defined in terms 
of systems of any of the types introduced thus far. Let systems that are incorporated in a 
metasystem be called its elements. They must be compatible in the sense that they all are 
based on the same type of backdrop (time, space, population). 

To denote metasystems, let a notational operator "M" (similar to the operator "S" 
for structure systems) be used in the following sense: when placed before a symbol that 
denotes a system of some type, it denotes a metasystem whose elements are systems of 
that specific type. For example, symbols MFB, MFs' and MSD denote meta systems 
whose elements are neutral behavior systems, directed ST-systems, and structure data 
systems (neutral), respectively. 

To define metasystems formally, let us first consider metasystems whose elements 
are neutral behavior systems, i.e., metasystems MFB • Any meta system of this type is 
defined by the triple 

MFB = (W,~, r), (5.1) 

where W denotes a support set, ~ denotes a set of neutral behavior systems whose 
support sets are subsets of W (not necessarily proper subsets), and r denotes a 
replacement procedure, which must implement a specific function of the form 

r: W -+ :#'fJ' (5.2) 

Let function (5.2) be called a replacementfunction. It is important to realize that this 
function is not required to be explicitly included in the metasystem. It is required only 
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that a procedure be given that represents one particular function of the form (5.2), 
even though it may be impossible or impractical to determine which function it actually 
is. One possibility is, of course, to define the replacement function explicitly. In such a 
case, the replacement procedure is identical with (defined by) the replacement function. 
These are illustrated later in this section by a few examples. 

Equation (5.1), which defines a metasystem of neutral behavior systems, can be easily 
modified to other types of metasystems by replacing symbols MF B and !Fa with 
symbols representing the other systems. As a practical convention, let a set of systems of 
some type always be denoted by the capital script version of the letter symbol that 
denotes systems of that type. Then, for example, 

MSFs = (W, g$'s' r), 

MD = (W, ~, r) 

are definitions of a metasystem of structure ST-systems (neutral) and a metasystem of 

directed data systems, respectively. It is trivial to obtain definitions of all the remaining 
types of metasystems. 

In general, metasystems can also be defined on a set of systems of different types. 
Let such a general type be denoted by MX. Then, 

MX = (W, f!{, r) (5.3) 

where f!{ is an arbitrary set of systems whose support sets are subsets of W; r is again a 
replacement procedure, which is required to implement a specific replacement function 

r: W -+ f!{. (5.4) 

From the standpoint of this general formulation, we can view metasystems whose 
elements are systems of the same type as special cases of (5.3). These special cases are 
then characterized by 

f!{ e { g, !?fi, $'B' $'s' g g, g!?fi, g $'B' g $'s }, 

.te{§', ~,~, $;s, g§" g~, g$;B' g$;s} 

for neutral systems, and in a similar way (using symbols with carets) for directed 
systems. Let such metasystems be called homogeneous metasystems. 

Replacement procedures, each of which is obviously a primary trait of a 
metasystem, can be defined in many different ways. They may even include random 
decisions. The only requirement is that each replacement procedure implement a 
particular replacement function of the general form (5.4). Some typical ways of defining 
replacement functions are illustrated by the following examples. 
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Example 5.1. This example describes the functioning of a set of traffic lights at an 
intersection for a 24-h period as a homogeneous metasystem that consists of three 
elements defined as data systems. Each of the three elements contains the same variables 
and state sets. Variables describing the lights for traffic bound north-south, 
south-north, east-west, and west-east are denoted by NS, SN, EW, and WE, 
respectively, and those describing the lights for left turns for traffic bound north-east, 
south-west, east-south, and west-north are denoted by NE, SW, ES, and WN, 
respectively. The support is time; 1 sec is the smallest recognizable interval of time in 
terms of which all other relevant time intervals are defined. 

Data matrices d1, d2 , d3 of the three elements D 1, D 2, D3 are defined in Figure 5.2a; 
their time sets are specified directly by the relevant time intervals. The data matrices are 
periodical and are defined by their first periods. As indicated in the figure, the individual 
systems D 1, D 2, D3 represent the traffic control at night, at periods of normal traffic 
during day, and during rush hours, respectively. The systems, viewed as elements of a 
metasystem, replace each other at specific times during each period of 24 h. A 
convenient manner of defining the replacement function is in this case the labeled 
diagram in Figure 5.2b. Its nodes represent the three elements of the metasystem, each 
arrow from Di to D j (i,j = 1,2,3) indicates that Di is replaced by D j , and the label 
attached to the arrow specifies the time at which the replacement is made. The 
metasystem is thus the triple 

where ~ and r are fully specified in Figure 5.2, and Tconsists of 5,760 defined time 
intervals for each period of24 h (420 periods of d1, 390 periods of d2 , and 240 periods of 

d3 )· 

Example 5.2. Consider a patient whose kidneys do not function properly at times. 
His condition is monitored in terms of several variables. When necessary, the 
functioning of his kidneys is replaced by the so-called hemodialysis machine. The same 
monitoring continues even when the machine is used, but some additional variables 
must be observed during such periods. Two source systems, say Sl and S2, can thus be 
recognized for the purpose of monitoring the patient. One of them is associated with the 
periods during which the natural kidneys function adequately, while the other one 
represents periods during which the hemodialysis machine is employed. System Sl 
contains the following four variables: 

VI-water in urine (measures to an accuracy ofO.lliters in the range ofo-lliter); 
v2-glucose in urine (measured to an accuracy of 20 g in the range of 0-200 g); 
v3-urea in urine (measured to an accuracy of 5 g in the range of 0-50 g); 
v4-blood urea nitrogen (only two states are defined by the observation channel, 

say states 1 and 0, depending on whether or not the actual value reaches at least 
150 mg per 100 ml of blood). 
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ELEMENT D,: night traffic control. 

tiE [0,20) [20, 30) [30,50) [50,60) 

NE=SW g Y r r 
NS = SN g Y r r 
ES=WN r r g y 
EW=WE r r g y 

ELEMENT D,: normal traffic control. 

tiE [0,15) [15,25) [25,55) [55,65) [65,80) 

NE=SW g Y r r r 
NS= SN r r g y r 
ES=WN r r r r g 
EW=WE r r r r r 

ELEMENT D.: traffic control during rush hours. 

tiE [0,30) 

NE=SW r 

NS = SN g 
ES=WN r 
EW=WE r 

[30,40) [40,50) [50, 60) 

r r r 

Y r r 
r r r 
r g y 

(a) 

6 a.m. 7 a.m., 4 p.m. 

~ 
11 p.m. 9 a.m., 6 p.m. 

REPLACEMENT PROCEDURE r 

(b) 

[80,90) 

r 
r 

y 
r 

Figure 5.2. Traffic light metasystem (Example 5.1). 
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[90, 110) [110, 120) 

r r 
r r 
r r 

g y 

System S2 contains all of these variables plus two additional variables: 

vs-temperature of blood (measured to an accuracy of 0.2°F in the range of 
97-100°F); 

v6-blood pressure (measured to an accuracy of 2 mm of mercury column in the 
range of 110-130 mm). 

These variables are essential for the hemodialysis machine, which must maintain each of 
them in a narrow range. All of the introduced variables are observed in time. The actual 
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time set (frequency of observation) depends on the seriousness of patient's condition as 
well as other factors and there is no need to define it for the purpose of this example. 

The two source systems can be viewed as a metasystem under the following 
replacement procedure r: if V4 = 1, replace S1 by S2; if V4 = 0, replace S2 by S1' The 
metasystem is thus the triple 

where Tis the union of the time sets defined for the individual systems S1' S2' 

Example 5.3. Consider a structure system whose elements are arranged in an n x n 
array. Assume that each of the elements, which are often called cells of the array, is 
coupled only to cells that are adjacent to it in the array. For example, a 5 x 5 array is 
shown in Figure 5.3. Individual cells in the array can be identified conveniently by two 
integers i,j E NO,n-1 that label rows and columns of the array, respectively. As indicated 
in Figure 5.3, they can be also identified by a single integer 

c = ni+j. 

Let c be called a cell identifier. 
Assume that the internal environment of each cell c (except the boundary cells) 

consists of its four adjacent cells, as shown in Figure 5.4. The cell has four input 

j=O 2 3 4 

Figure 5.3. 5 x 5 cellular array 
(Example 5.3). 
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Figure 5.4. Internal environment of a 
cell in a cellular array (Example 5.3). 

c-1 

Vc 

vc-l 

vc-n 

Vc 
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c-n 

Vc 

vc+1 

c c + 1 

Vc 

vc+n 

c + n 

variables Vc- n' Vc- h vc+ 1, vc+n, one from each of the adjacent cells. It has one output 
variable, which is coupled to all the adjacent cells. The internal environment of each of 
the boundary cells (cells in rows i = 0, n -1 and columnsj = 0, n -1) is degenerated in 
an obvious way. 

Let all cells in a cellular array, say the one in Figure 5.3, be deterministic directed 
ST-systems defined by the same totally ordered time set Tand a ST-function 

(5.5) 

where v~ represents the next state ofvc and ceNO,24; it must, of course, be specified how 
(5.5) is interpreted for the boundary cells, where some of the input variables are not 
present. Assume further that only two states, 0 and 1, are distinguished for each of the 
variables. When Vc = 1 (vc = 0), let cell c be called active (inactive, respectively). 

Given a cellular array, a set of structure systems can be defined on it, each 
characterized by a subset of its cells. For example, there are 225 (more than 3.3 x 107) 

structure systems for the cellular array in Figure 5.3. It is sometimes desirable to 
integrate structure systems in this set, say set y.Fs' into a metasystem: 

MSF s = (T, YJis' r) (5.6) 

by a suitable replacement procedure. As a simple example, let the replacement 
procedure r in (5.6) be defined as follows: cell c(ceNO• 24 ) is included in the structure 
system if and only if it is active or at least one cell in its internal environment is active, i.e., 
if and only if 
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To show a specific metasystem of the kind characterized by (5.6), let us use the 
proposed replacement procedure and let 

be the ST-function of cells in the 5 x 5 cellular array. Variables that are not available in 
the internal environment of a cell are simply excluded from the formula. This 
metasystem generates sequences of structure systems, one for each initial structure 
system. Short segments of three such sequences are shown in Figure 5.5, where the black 
and gray squares identify cells that-are included in the individual structure systems, and 
distinguish active cells (black squares) from inactive cells (gray squares); white squares 
identify cells that are not included in the various structure systems. ' 

Variations of the metasystem introduced in this example are possible by using 
different ST-functions for the cells, or different replacement procedures. More radical 
variations can be produced by using different arrays, generally k-dimensional, where 
k ~ 1. The members of this class of metasystems are usually referred to in the literature as 
tessellation automata. 

Example 5.4. Consider an image system that consists of a single variable v, state 
set V, and a single support t, which is viewed as an index identifying the location in 

Figure 5.5. Segments of three possible sequences of structure systems generated by the 
metasystem defined in Example 5.3. 
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strings of states from V. The support set T is totally ordered and represented by the set 
of nonnegative integers. A class of metasystems of the type 

MD = (T, £0, r) 

can be defined on this image system in such a way that 

• £0 is the set of all data systems that can be formed by variable v for all possible 
subsets Nn of T (n = 1, 2, ... ), and 

• r is a replacement procedure defined in the following general form: given a data 
system D E ~ with a data array d, scan d in increasing order of its support 
(normally from left to right) and replace d with d' by substituting for each state a. 
in d a string p(a.) of states, as specified by a function 

(5.7) 

for some finite k; d' defines a new system D' E~. 

These metasystems are usually referred to in the literature as developmental 0 L
systems (or Lindenmayer systems without interactions). Pairs a., p(a.) are usually called 
production rules and are often denoted by a. ..... p(a.). 

As a specific example of a deterministic OL-system (a metasystem in our 
terminology), let V = NO• 9 and let the production rule function 

p: V -+ V U V2 
be defined by the table 

a. 0123456789 

p(a.) 12 93 49 61 25 87 78 34 9 9 

Then, for example, if the initial data system has the data array [0], the metasystem 
generates a sequence of data systems with the following data arrays: 

[0] 

[1 2] 

[9 3 4 9] 

[9 6 1 2 5 9] 

[9 7 8 9 3 4 9 8 7 9] 

[9 3 4 9 9 6 1 2 5 9 9 3 4 9] 

[9 6 1 2 5 9 9 7 8 9 3 4 9 8 7 9 9 6 1 2 5 9] 

~78934987993499612599349978934987~ 
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For nondeterministic OL-systems, production rules are not defined by a produc
tion function of the form (5.7), but by any set of pairs (0(, (3) taken from the Cartesian 
product 

The selection of individual production rules may be based on conditional probabilities 
of f3 given 0(. 

5.4. MET ASYSTEMS VERSUS STRUCTURE SYSTEMS 

Limited by space, afrog in a well cannot 
understand what is an ocean. 

Limited by time, an insect in summer cannot 
understand what is ice. 

-CHUANG-Tzu 

Structure systems and metasystems represent two schemes for integrating other 
systems (source, data, or generative systems) into larger units. They are different 
schemes, independent of each another, and neither is superior to the other. They can 
also be combined, i.e., applied to each other. 

Structure systems integrate other systems with respect to the sets of their variables 
and under the assumption that they are all based on the same support set. Elements of 
structure systems are thus systems with different sets of variables, but with the same 
support sets. 

Metasystems, on the other hand, integrate other systems with respect to their 
support sets, regardless of whether or not they are all based on the same set of variables. 
Elements of metasystems are thus systems with different local support invariances 
defined in terms of an overall support set; they may be defined for a single overall set of 
variables. 

As illustrated in Section 5.3, metasystems can be employed for integrating structure 
systems, which, in turn, are employed to integrate other systems. For instance, a class of 
metasystems of structure ST-systems (tessellation automata) is discussed in Example 
5.3. Such systems are denoted by the symbol MSF s' in which both of the integrating 
operators, M and S, are used. 

It is also possible to use structure systems for integrating metasystems defined for 
different sets of variables. To represent such systems symbolically, the operator S must 
precede the operator M. For example, symbol SMF B denotes a structure metasystem 
whose elements (i.e., elements of the metasystems integrated in the structure system) are 
neutral behavior systems, while symbol MSF B denotes a metasystem whose elements 
are structure behavior systems. The operators are thus noncommutative. Systems MSX 
and SMX (for any X) are not only different, but also noncomparable in terms of the 
ordering represented by the epistemological hierarchy of systems. 
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Example 5.5. Consider a directed structure system that consists of two meta
systems whose elements are directed behavior systems. The metasystems (elements of 
the structure system), denoted by symbols 1 MF Gsand 2MF GS, are coupled according to 
the block diagram in Figure 5.6a. Each of them consists of two directed behavior 

54 

1MFG8 

55 

2MFG8 

56 (b) 

(a) 

"fGB(IX) '2f GB (IX) 21f GB(P) 22fGB (P) 

\ I \ I 
5, 52 5. 55 55 52 53 55 5. 5. 

IX= 0 0 0 0 0 P= 0 0 0 1 

0 0 1 0 0 0 0 
0 1 0 0 0 1 0 0 
0 1 0 1 0 1 1 1 1 

0 0 1 0 0 0 0 0 
0 0 0 

0 0 0 1 
0 0 

(c) 

51=52=54=0 52=53=55=0 

(d) 

Figure 5.6. Illustration of a structure metasystem (Example 5.5). 
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systems that are based on variables with two states, 0 and 1, and the same totally ordered 
support set. Behavior systems of each meta system are defined in terms of the same mask, 
but differ in their behavior functions. 

The masks 1 M and 2M are defined in Figure 5.6b. As required for structure 
systems, sampling variables that occur in both of them have the same identifiers. Each 
mask is used in both behavior systems of its metasystem. 

The behavior functions (generative) are deterministic, i.e., the generated variable in 
each of the behavior systems is a function of the generating and input sampling 
variables. They are defined in Figure 5.6c. Symbols 11JGB' 12JGB denote behavior 
functions involved in the first metasystem, and symbols 21JGB' 22JGB denote those in the 
second metasystem. 

Both metasystems use a replacement procedure of the same type: when all the input 
and generating variables are in state 0, replace the first behavior system with the second 
one; when all the input and generating variables are in state 1, replace the second 
behavior system with the first one. When this description is applied to the appropriate 
variables, procedures 1r and 2r are obtained, which are shown in terms of their 
replacement diagrams in Figure 5.6d. 

A sample of data generated by this structure metasystem for the initial condition 
51 = 52 = 53 = 0 and a particular input sequence (sequence of states of variable vd is 
shown in Figure 5.7. It is indicated which of the behavior systems of the two 
meta systems is used at each support instance t. 

Identifier of behavior function in 1 MFGB 

2 2 2 2 2 2 2 2 2 1 .. 

t= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

v1 '0' 0 0 0 0 0 0 0 

v2 0 0 0 0 0 0 0 0 0 

v3 0 0 0 0 0 0 0 0 0 

i 2 2 2 2 2 2 2 1-

initial condition 
Identifier of behavior function in 2MFGB 

Figure 5.7. A sample of data generated by the structure metasystem defined in Figure 5.6 

(Example 5.5). 
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5.5. MULTILEVEL MET ASYSTEMS 

Insofar as identities are preserved, they are orderly laws of nature. Insofar as 
identities decay, these laws are subject to modification. But the modification itself 
may be lawful. The change in the individual may exhibit a law of change-and yet 
such laws of change are themselves liable to change. 

-ALFRED NORTH WHITEHEAD 
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We may now define multilevel metasystems in a manner similar to that in which 
multilevel structure systems are defined (Section 4.4). These are metasystems whose 
elements are metasystems, whose elements ... , etc. This recursion must terminate with 
elements that are not metasystems. 

Following the analogy with structure systems, let multilevel metasystems be 
denoted by a generalized operator M\ whre k indicates the number of levels involved. 
For example, symbol M 3n denotes a three-level metasystem whose final elements are 
data systems; it is a metasystem whose elements are metasystems, whose elements are 
again metasystems, whose elements are neutral data systems. Two-level metasystems 
may for convenience be called meta-metasystems. 

Formally, a k-Ievel metasystem is defined by the triple 

(5.8) 

where W k and rk denote its support set and replacement procedure, respectively, and 
vi( k - 1 flI denotes a set of its elements (metasystems of level k - 1) whose final elements 
are systems in set flI, which are not metasystems. 

In a multilevel metasystem, say M kX, only the highest-level replacement procedure 
rk is a primary trait through which the identity of the system is recognized. Replacement 
procedures of all the lower-level metasystems are secondary traits since they represent 
only local support invariance from the standpoint of the metasystem M kX. 

Example 5.6. Consider a two-level metasystem (or a meta-metasystem) 

whose support set Tand first element! MSF s are the same as those of the metasystem 
defined in Example 5.3 (a tessellation automaton). The second element (metasystem) 
has the form 

where T, [f$;sare the same components as those in metasystem IMSFs, and 2r is the 
following replacement procedure: make one randomly selected active cell in the 
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structure system inactive and exclude from the structure system those cells in its internal 
environment, including the cell itself, for which it is the case that neither they nor any of 
their adjacent cells are active. 

The two metasystems are integrated in the meta-metasystem by the following 
second-level procedure (or metaprocedure) r2: if the structure system recognized at 
support instant t - 1 is different from the one recognized at support instant t - 2, then 
use metasystem 1 MSF s; otherwise, use metasystem 2MSF s. 

Example 5.7. Consider a developmental OL-system (Example 5.4), which is 
defined as a meta-metasystem. It consists of two metasystems 

IMD= (T,~, lr) 

2MD = (T, ~, 2r ), 

which differ from each other only in their replacement procedures lr,2r. Their 
components Tand ~ are the same as defined in Example 5.4 except that V = {O, 1, 2, 3}. 
Replacement procedures lr, 2r are defined by the following production rule functions 
Ip, 2p, respectively: 

o 1 2 3 ex o 1 2 3 

1 p{ex) 01 21 30 32 2p{ex) 01 20 30 32 

The meta-metasystem M 2D is then defined as 

where the metaprocedure r2 is defined as follows: scan the last data array obtained; if at 
least one half of the entries are 0, use metasystem 1 MD (function 1 p); otherwise, use 
metasystem 2MD (function 2p). 

For example, given the initial data array [0], metasystem 1 MD generates the 
following sequence of data arrays: 

[0] 
[01] 
[0 1 2 1] 
[0 1 2 1 3 0 2 1] 
[0 1 2 1 3 0 2 1 3 2 0 1 3 0 2 1] 
[0 1 2 1 3 0 2 1 3 2 0 1 3 0 2 1 3 2 3 0 0 1 2 1 3 2 0 1 3 0 2 1] 
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Metasystem 2MO generates another sequence of data arrays: 

[0] 
[0 1] 
[0 1 2 0] 
[0 1 20 3 00 1] 
[0 1 2 0 3 0 0 1 3 2 0 1 0 1 2 0] 
[0 1 2 0 3 00 1 3 2 0 1 0 1 20 3 2 3 00 1 2 00 1 20 3 00 1] 
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Meta-metasystem M 20 generates still another sequence of data arrays (it is indicated in 
each case which of the production rule functions is used): 

[0], 1 P 
[0 1], Ip 

[0 1 2 1], 2p 
[0 1 2 0 3 0 2 0], 1 P 
[0 1 2 1 3 00 1 3 2 0 1 3 00 1], 2p 
[0 1 2 0 3 0 2 0 3 2 0 1 0 1 2 0 3 2 3 0 0 1 2 0 3 2 0 1 0 1 2 0], 2p 

Multilevel metasystems can be combined with multilevel structure systems in any 
sequence. The only requirement is that elements of the metasystem or structure system 
at the lowest level be one of the three basic system types-source, data, or generative 
systems. Systems such as MSMSF B, SM 2S20, or M 2S2MSS are thus perfectly 
acceptable in the GSPS language. 

5.6. IDENTIFICATION OF CHANGE 

We understand change only by observing what remains invariant, and permanence 

only by what is transformed. 

----GERALD M. WEINBERG 

The great variety of ways in which metasystems with different types of elements 
and different numbers of levels can be defined is illustrated by some representative 
examples in Sections 5.3-5.5. However, the problem of determining, if desired, an 
appropriate metasystem characterization of the investigated variables from their data is 
one of the most difficult and methodologically least developed systems problems. 

The problem stems from a fundamental question associated with systems inquiries: 
should the constraint among the investigated variables be viewed as support invariant 
or rather as varying according to some support-invariant rules of change (a replacement 
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procedure)? One of the difficulties is that there is no absolute answer to this question. 
Which of the views should be taken depends not only on the nature of the variables 
themselves, but also on the objectives of the inquiry, the way in which the constraint is 
expressed (mask, constraint measure), whether the data are complete or not, and other 
factors, some of which may be connected with the investigative contexts. 

When restricted to a particular way of expressing the constraint (e.g., probability 
measures, and the largest acceptable mask), and under the usual objective criteria of 
generative uncertainty and complexity, the problem becomes one of identifying a 
change in the behavior or ST-function. In other words, it becomes a problem of 
identifying significant local constraints among the variables within the support set 
involved. 

If a behavior function representing the whole support set (a global function) does 
not differ much from behavior functions corresponding to various subsets of the 
support set (local functions), then there is no need for resorting to a metasystem 
formulation. If, however, substantial differences between the functions are detected, the 
meta system formulation should be seriously considered. This common-sense conclu
sion involves, unfortunately, some conceptual as well as practical difficulties. 

First, the term "substantial difference between behavior functions" must be defined 
in some operational manner. That is, an appropriate distance function must be selected 
for behavior functions of the kind involved to give a specific meaning to the term 
"difference." In addition, some threshold value of the distance must be specified to give a 
meaning to the term "substantial." Although these specifications should be left to the 
discretion of the user, the GSPS should offer (upon request) some options and use one 
of them as a default option. 

Second, the difference (distance) between the global and local behavior functions is 
significant only if the local function is determined for a sufficiently large subset of the 
support set. Once again, a decision must be made to specify the size of the smallest 
subsets of the support set that are considered significant (acceptable) for determining a 
meaningful local behavior function. The significance depends on the number of states 
distinguished by the variables, the measure in terms of which their constraint is 
characterized, the mask involved, and possibly other factors. 

In addition to the conceptual difficulties mentioned, the problem of identifying 
significant local constraints involves considerable practical difficulties. These are 
primarily connected with the fact that the number of subsets of the support set, which 
must be inspected in the process of searching for significant local constraints, grows 
exponentially with the size of the support set. As a consequence, the amount of 
computation involved grows explosively with the size of the support set so that the 
problem becomes intractable for support sets of even modest size. 

As an illustration of this problem area, a simple procedure for the identification of 
local constraints is described in the rest of this section. Let us call it a metasystem 
identification procedure. The procedure is based on the assumption that the support set T 
is totally ordered and that the variables are characterized by a data system. It either does 
not produce any metasystem (if no significant local constraints are found) or it produces 
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a metasystem that consists of a sequence of behavior systems in the support set. The 
systems replace each other at specific instances of the support set, which are determined 
by the procedure. 

Given a data system with totally ordered support set T = N n , a specific mask 
(usually the largest acceptable mask), and a particular way of representing constraint 
among the variables (with its measure of generative uncertainty), the essence of the 
metasystem identification can be described as follows: 

1. Let m, d be a given integer and a given rational number, respectively, and let t 
= 1, k = 1. 

ll. Determine the behavior function for the subset of data that corresponds to 
segment [t, t + m] of the support set and calculate its generative uncertainty 

VI· 
iii. Increment k by 1; if t + km ¢ T, go to (vi). 
IV. Determine the behavior function for the subset of data that corresponds to 

segment [t, t + km] of the support set and calculate its generative uncertainty 

V k • 

v. If I Uk - Uk- 1 I /max (Uk' Uk-I) < d, go to (iii); otherwise, record t + (k - l)m 
as an approximate point of replacement of elements of a metasystem, 
1 = (k - 1 )m, make k = 1, and go to (ii). 

vi. Stop. 

The procedure is based on the following observation: if there are no significant 
local constraints in the data, the generative uncertainties of local behavior functions 
based on segments [1, t] of the support set converge quickly with increasing t (after 
some initial erratic changes) to values within a small interval d; if, on the other hand, the 
data contain a significant local constraint, say within the segment [t l' t 2] of the support 
set, the generative uncertainties are likely to exhibit changes substantially larger than d 
around the parameter instances t l' t 2 while it converges to another small interval inside 
the segment [t l' t 2 ]. A large change in the generative uncertainty, after it converged to 
some small interval, is thus a basis for viewing the system as a metasystem, each element 
of which is associated with a subset of the support set. 

The sensitivity and computational complexity of the procedure depend con
siderably on the chosen values of m and d. To help the user in this respect, the GSPS 
should be equipped with relevant characteristics obtained by appropriate simulation 
experiments, similar to those described in Chapter 4 for reconstructability analysis. It is 
also possible to repeat the procedure for several values of m and d and average the 
obtained results. In any event, the procedure indicates only an approximate location of a 
feasible replacement point. To locate it more precisely and evaluate its significance, one 
must search for its natural meaning in the context of the overall investigation. 

Example 5.S. This example describes an application of the metasystem identifi
cation procedure in the area of performance evaluation of aircraft pilots during their 
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training on flight simulators. The source system consists of four variables describing 
relevant characteristics of a jet aircraft and time as a support. To avoid technical details, 
let each variable be characterized by its label, descriptive name of the corresponding 
attribute, and a set of states: 

s-speed, state set N 5; 
a-altitude, state set N 7 ; 

r-TACAN (typical tactical air navigation approach) radial, state set N 4 ; 

d-TACAN DME (distance-measuring equipment) direction, state set N 4 . 

Observation channels and a data matrix for these variables are given in Table 5.1. The 
data matrix, which is presented in increasing order of time, describes a typical (ideal, 
correct) tactical navigation landing approach by a jet aircraft at some specific approach 

TABLE 5.1 
Specifications of the System Discussed in Example 5.8 

Observation channels 

Attribute: Speed Altitude Radial Direction 
Variable: 
Units: 

Meaning 
of 
states 

s a d 
Knots Feet above Degrees relative to Nautical miles 

sea level magnetic north 

[150, 170) [1,700-1,840) [0--93) [0--2.6) 
2 [170, 220) [1,840--2,400) [93~ 113) [2.6-14) 
3 [220, 250) [2,400-2,700) [113~ 122) [14-21) 
4 [250--270) [2,700-4,900) [122~360) > 21 
5 ~ 270 [ 4,900-6,900) 
6 [6,900-22,800) 
7 > 22,800 

Data matrix 

s 444455555555555555555555555555555555555555555554444444333 
a 777666666666666666666666666666666666666666666666666655555 
r 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 222 
d 444444444444444444444444444444444444433333333333333333333 

s 3333333333333322222222222221111111111111111111111111 1 1111 
a 555555555555444444444444444444333333333333333333333333333 
r 222333333333333333333333333333333333333333333333333333333 
d 333333333333333322222222222222222222222222222222222222222 

s 1111111111111112222233333333333333333333333333333 
a 3222222111111112222223334444444444444444444444444 
r 3333333333333333333344444444444444444444444444444 
d 2222222222111111111111111111222222222222222222222 
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site. The full time period of the landing approach was divided into 163 equal time 
intervals and for each of them the appropriate states of the variables were defined. 

The data matrix in Table 5.1 is a reference with respect to which performances of 
various student pilots are compared. Based on this comparison, students are evaluated 
and graded. It is desirable, from the standpoint of both students and instructors, to 
determine natural subtasks in the overall task so that weaknesses in students' skills 
become identified more specifically by being localized. 

The metasystem identification procedure was applied to the data matrix in 
Table 5.1 for a probabilistic behavior function, a two-column mask, and fl = 0.1. It was 
repeated for several values of m. The replacement points obtained for different values of 
m were then averaged. This resulted in three elements of a metasystem, which are 
represented by the following segments of the time set: 1-70, 71-122, 123-163. These 
elements can be, in fact, given a natural interpretation in terms of the actual landing task. 
They correspond to the penetration descent, the flight along the arc and interception of 
the final approach course, and the final approach, respectively. 

Mask evaluation (Section 3.6) and reconstruction procedure (Section 4.7) were 
then performed on each of the elements of the metasystem. The results obtained are 
summarized in Figure 5.8. The final system is thus of the type MSF B' Clearly, this 
system would permit a much more focused evaluation of students than would be 
possible given only a single overall behavior system. 

5 s 5 s s 

a a a a 

r r r 

d d d 

a d 

Figure 5.8. Metasystem iden- t € [1 ,70J te[71,122j u[123,163j 

tified for a typical landing 
approach by a jet aircraft t=71 t=123 

(Example 5.8). lSFB .. 2SFB .. 3SFB 
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NOTES 

5.1. The concept of tessellation automata (Examples 5.3,5.6) was introduced by Yamada 
and Amoroso in 1969 [YA3]. Their paper initiated research into the mathematical properties of 
tesselation automata [AM2, YA2, YA4, 5] as well as their applications [HA4, OSl]. 

5.2. The concept of developmental systems (Examples 5.4, 5.7) was introduced by 
Lindenmayer [LI2], primarily as a convenient mathematical formalism for describing various 
phenomena of biological growth. It has become a very active area of mathematical as well as 
applied research [LI3-6, HE2, R09]. 

5.3. The metasystem identification procedure described in Section 5.6 was proposed by 
Uyttenhove [UY1], who also performed some simulation experiments to identify desirable values 
of m and fl.. Example 5.8 is described in more detail in a paper by Comstock and Uyttenhove 

[COl]' 

EXERCISES 

5.1. Make a list of all traits included in systems types S, D, F B, F s, SS, SD, SF B, MS, MD, MF B, 

SMF B, MSF B, and determine for each of the types which of the traits are primary and which 
are secondary. 

5.2. Define at least one real-world metasystem in the area of your interest. 
5.3. Extend Example 5.3 in the following ways: 

(a) generate sequences of structure systems for an initial system different from those in 
Figure 5.5; 

(b) repeat the example for a different ST-function of cells; 
(c) repeat the example for a different replacement procedure. 

5.4. Consider a probabilistic metasystem that represents a developmental OL-system 
(Example 5.4). Its production rules IX -+ P are associated with conditional probabilities 

p(PIIX) as follows: 

IX 

P 
o 
o 

o 
00 

1 

1 

1 

02 

2 

2 

p(PIIX) 0.25 0.75 0.75 0.25 0.75 

2 

11 

0.25 

Generate sequences of data systems for various initial systems by determining each choice, 
for example, by throwing two coins. 

5.6. Determine the total number of all epistemological types of systems under the assumption 
that the maximum number of combined levels of structure systems and metasystems is n. 
(Count only generative systems, rather than behavior and ST-systems; count only source 
systems rather than object and image systems.) 
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COMPLEXITY 

... the Scientist, like the Pilgrim, must wend a straight and narrow path between 
the Pitfalls of Oversimplification and the Morass of Oversimplification. 

-RICHARD BELLMAN 
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... the fruits of science are simple fruits, or more precisely,fruits of simplification. 
--GERALD M. WEINBERG 

The notion of complexity appears in this book on numerous occasions and in different 
contexts. It also appears in different forms, depending primarily on the type of system or 
problem to which it is applied. This clearly indicates that complexity plays an important 
role in systems problem solving. In fact, it is emerging as a fundamental concept of 
systems science, one that is perhaps as fundamental as the concept of energy is to the 
natural sciences. 

There are many facets to complexity. Starting with a common dictionary, we find 
that complexity is "the quality or state of being complex," i.e., "having many varied 
interrelated parts, patterns, or elements and consequently hard to understand fully "or" 
marked by an involvement of many parts, aspects, details, notions, and necessitating 
earnest study or examination to understand or cope with" (Webster's Third New 
International Dictionary). This general characterization of complexity does not contain 
any qualification regarding the kind of things to which it is applicable. As such, it can be 
applied to virtually any kinds of things, material or abstract, natural or man-made, 
products of art or science; it can be applied to systems, problems, methods, theories, 
laws, games, languages, machines, organisms, organizations, or any other things we may 
name. Regardless of what it is that is actually considered as being complex or simple, its 
degree of complexity is, in general, associated with the number of recognized parts as 
well as the extent of their interrelationship. In addition, complexity has a somewhat 
subjective connotation since it is related to the ability to understand or cope with the 
thing under consideration. Thus a thing that is complex for one person may be simple 
for someone else. 

From the standpoint of the GSPS, the common-sense meaning of complexity is 
expressed by the interaction between the investigator and the object of investigation, 
through which a source system emerges. Complexity in this sense is thus not an intrinsic 
property of the investigated object; it is rather a result of the way in which the 
investigator interacts with it. That is to say, we do not attempt to deal with complexities 
of objects, only complexities of systems defined on objects. This point is well 
characterized by Ross Ashby in one of his last writings [AS12]: 

325 
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The word "complex," as it may be applied to systems, has many possible meanings, 
and 1 must first make my use of it clear. There is no obvious or pre-eminent meaning, 
for although all would agree that the brain is complex and a bicycle simple, one has 
also to remember that to a butcher the brain of a sheep is simple while a bicycle, if 
studied exhaustively (as the only clue to a crime) may present a very great quantity of 
significant detail. 

Without further justification, 1 shall follow, in this paper, an interpretation of 
"complexity" that 1 have used and found suitable for about ten years. 1 shall measure 
the degree of "complexity" by the quantity of information required to describe the vital 
system. To the neurophysiologist the brain, as a feltwork of fibres and a soup of 
enzymes, is certainly complex; and equally the transmission of a detailed description 
of it would require much time. To a butcher the brain is simple, for he has to 
distinguish it from only about thirty other "meats," so not more than log2 30, i.e. 
about 5 bits, are involved. This method admittedly makes a system's complexity 
purely relative to a given observer; it rejects the attempt to measure an absolute, or 
intrinsic, complexity; but this acceptance of complexity as something in the eye of 
the beholder is, in my opinion, the only workable way of measuring complexity. 

Others have expressed their views on this important issue differently, though in the 
same spirit. The following two imaginative quotes should reinforce the point I want to 
make here: 

We can only hope for explicit models of the world and not for reality itself or even a 
small part of it. (Patrick Suppes [SU3]) 

One of the functions of the experimental method is to substitute simple artificial 
systems for the complex systems that Nature presents to us. (Herbert A. 
Simon [SI4]) 

At the source system level, the notion of systems complexity is somewhat primitive. 
It is expressed solely in terms of the cardinalities of the sets involved-the set of 
variables, set of supports, state sets, and support sets-since no relationship among the 
sets is available. At higher epistemological levels, the notion of systems complexity 
becomes more meaningful. It is, of course, different for different system types. 

As discussed in Chapters 2-5, the same source system can be described at the 
various higher epistemological levels in many different ways. Complexity is usually one 
of the criteria involved in defining an overall preference ordering on such sets of 
alternative systems. 

In some contexts, complexity is a desirable property, i.e., we search, within given 
constraints, for systems with a high degree of complexity. Cryptography and the design 
of random number generators are two typical examples of such contexts. In some 
situations, a certain degree of complexity is a necessary condition for obtaining some 
specific systems properties, usually referred to as emergent properties. Self
reproduction, learning, and evolution are examples of such properties. 

In other contexts, which seem to predominate in systems problem solving, we 
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search for simple systems or attempt to simplify existing systems. The importance of 
systems simplicity and simplification methods is well depicted by Herbert Simon [SI4]: 

The human species has survived and thrived in the world, simple or complex as it 
may be, not so much through the speed and power of its computational capacities, as 
by exploiting the fact that the systems of interest to it represent highly special cases 
that can often be analyzed by relatively simple means, provided their underlying 
structure is detected. This argues for a strategy of searching for that structure, of 
pattern induction-a skill that is rather highly developed in the animal kingdom
followed by special analysis and heuristic problem-solving search, rather than brute
force analysis of very general classes of highly interconnected complex systems. 

Similar sentiments are expressed by Edward Teller, a physicist[TEl]: 

Simplicity, for me, is best characterized in a story from the art traditionally the 
favorite of mathematicians and scientists: music. When Mozart was fourteen years 
old, he listened to a secret mass in Rome, Allegri's Miserere. The composition had 
been guarded as a mystery; the singers were not allowed to transcribe it on pain of 
excommunication. Mozart heard it only once. He was then able to reproduce the 
entire score. 

Let no one think that this was exclusively a feat of prodigious memory. The 
mass was a piece of art and, as such, had threads of simplicity. The structure is the 
essence of art. The child who was to become one of the world's greatest composers 
may not have been able to remember the details of this complicated work, but he 
could identify the threads, remember them and reinvent the details having listened 
once with consummate attention. These threads are not easily discovered in music or 
in science. Indeed, they usually can be discerned only with effort and training. Yet 
the underlying simplicity exists and once found makes new and more powerful 
relationships possible. 

Gerald Weinberg goes even further when he suggests defining systems science as a 
science of simplification [WE3]. After describing the remarkable simplification which 
Newton successfully developed for mechanics, Weinberg summarized the importance 
of simplifications as follows: 

Newton was a genius, but not because of superior computational power of his brain. 
Newton's genius was on the contrary his ability to simplify, idealize, and streamline 
the world so that it became, in some measure, tractable to the brains of perfectly 
ordinary men. By studying the methods of simplification which have succeeded and 
failed in the past, the general systems theorist hopes to make the progress of human 
knowledge a little less dependent of genius. 

Complexity and its inverse-simplicity-are associated with many profound 
philosophical, mathematical, computational, and psychological issues. Some of them, 
which are of a general nature and are relevant to systems problem solving, are touched 
on in the subsequent sections of this chapter. 
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6.2. THREE RANGES OF COMPLEXITY 

Sometimes it is simplicity which is hidden under what is apparently complex; 

sometimes, on the contrary, it is simplicity which is apparent, and which conceals 

extremely complex realities . ... No doubt, if our means of investigation became 

more and more penetrating, we should discover the simple beneath the complex, and 

then the complex from the simple, and then again the simple beneath the complex, 
and so on, without ever being able to predict what the last term will be. We must stop 
somewhere, and for science to be possible we must stop where we have found 
simplicity. That is the only ground on which we can erect the edifice of our 

generalizations. 

-H ENRI POINCARE 

Before discussing how complexity can be measured, what are its various forms, and 
how it is expressed within the GSPS framework, it is desirable to continue for a while 
with its common sense connotation and take a global view over the entire range of its 
possible meanings. A historical view seems most appropriate for identifying the main 
methods of our dealing with complexity. How has complexity been dealt with in science, 
engineering, and other areas of human endeavor? 

When looking at the history of modern science( since the seventeenth century), we 
can clearly see that prior to the twentieth century science had been predominantly 
occupied with very simple systems, usually systems with two variables. The recorded 
history about the main discoveries in science from the seventeenth through the 
nineteenth century consists basically of variations on the same theme: a discovery of 
hidden simplicity in a situation that appears complex. Situations of this sort are 
characterized by an extreme discrimination between a small number of significant 
factors find a large number of negligible factors. This allows the scientist to introduce 
strong, but experimentally acceptable, simplifying assumptions and thus consider the 
investigated attributes as being "isolated" from all the negligible factors. 

Situations in which a few significant factors can be isolated from a large number of 
presumably negligible factors are plentiful in physics, but they are in short supply in 
other areas of science. That is why physics was so successful, leaving the other sciences 
far behind. It was primarily Newton who paved the way to these successes by showing 
the feasibility of drastic simplifications in physics. His law of universal gravitation, 
which is still considered one of the greatest achievements of the human mind, is a result 
of extreme simplifying assumptions. And yet, it is adequate to calculate, fairly precisely, 
the orbits of the planets. 

The actual calculations based on the Newton law require, of course, appropriate 
mathematical apparatus. Such an apparatus-the calculus and differential equations
is again due to Newton (and, perhaps, also to Leibniz). He developed it as a convenient 
tool for solving problems associated with simple physical systems such as those obeying 
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his law. It might be said that he tailored it for dealing with the physical simplicitv he 
himself uncovered. 

Until about 1900, science had been predominantly under the influence of Newton's 
achievements. His drastic simplification had been tried in other contexts. It succeeded in 
the study of some physical phenomena, such as electricity, magnetism or fluid 
mechanics, but it failed in virtually all other areas, most notably biology and medicine. 
Problems with which science was concerned or rather equipped to deal with, were 
largely problems involving deterministic systems with only two or three variables. They 
were treated analytically, usually in terms of differential equations. Problems with these 
characteristics-very small number of variables, high degree of determinism, suitable 
for analytic treatment-are usually referred to as problems of organized simplicity. 

In the late nineteenth century, certain physicists became interested in the 
investigation of systems representing the motions of gas molecules in a closed space. 
Such a system would typically consist of, say, 1023 molecules. The molecules have 
tremendous velocities and their paths, affected by incessant impacts, assume the most 
capricious shapes. No one would deny that this is an extremely complex system! No one 
would deny either that Newton's law of gravitation is of no use in analyzing these 
systems, in spite of all the tremendous simplifications behind it. 

The problem of analyzing the motions of gas molecules in a closed space, a system 
that is extremely complex and disorganized, is certainly hopeless when viewed from the 
standpoint of ideas and tools developed for dealing with situations of organized 
simplicity. If anything can be used at all, a radically new approach to the problem must 
be found. That happened, when some creative thinkers, most notably Ludwig 
Boltzmann and Josiah Willard Gibbs, developed powerful statistical methods to deal 
with problems that involve very large numbers of variables acting in a highly random 
manner. Such problems are now usually called problems of disorganized complexity. 

Statistical methods do not produce results regarding the individual variables (e.g., 
motions of the individual molecules). Their purpose is to calculate a small number of 
average properties. To explain this point, let me quote from a famous paper by Warren 
Weaver [WE 1]: 

The classical dynamics of the nineteenth century was well suited for analyzing and 
predicting the motion of a single ivory ball as it moves about on a billiard table. In 
fact, the relationship between positions of the ball and the times at which it reaches 
these positions forms a typical nineteenth-century problem of simplicity. One can, 
but with a surprising increase in difficulty, analyze the motion of two or even of three 
balls on the billiard table. There has been, in fact, considerable study of the 
mechanics of the standard game of billiards. But, as soon as one tries to analyze the 
motion of ten or fifteen balls on the table at once, as in pool, the problem becomes 
unmanageable, not because there is any theoretical difficulty, but just because the 
actual labor of dealing in specific detail with so many variables turns out to be 
impracticable. 

Imagine, however, a large billiard table with millions of balls rolling over its 
surface, colliding with one another and with the side rails. The great surprise is that 
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the problem now becomes easier, for the methods of statistical mechanics are 
applicable. To be sure the detailed history of one special ball cannot be traced, but 
certain important questions can be answered with useful precision, such as: On the 
average how many balls per second hit a given stretch of rail? On the average how far 
does a ball move before it is hit by some other ball? On the average how many 
impacts per second does a ball experience? 

Earlier it was stated that the new statistical methods were applicable to 
problems of disorganized complexity. How does the word "disorganized" apply to 
the large billiard table with the many balls? It applies because the methods of 
statistical mechanics are valid only when the balls are distributed, in their positions 
and motions, in a helter-skelter, that is to say a disorganized, way. For example, the 
statistical methods would not apply if someone were to arrange the balls in a row 
parallel to one side rail of the table, and then start them all moving in precisely 
parallel paths perpendicular to the row in which they stand. Then the balls would 
never collide with each other nor with two of the rails, and one would not have a 
situation of disorganized complexity. 

Since their inception at the beginning of this century, statistical methods have been 
successful in dealing with many problems of disorganized complexity in science as well 
as other areas. Statistical mechanics, thermodynamics, and statistical (or quantitative) 
genetics are well-known examples of their success in science. In engineering, they have 
played a major role in the design of large-scale telephone networks and time-sharing 
computer systems, in dealing with problems of engineering reliability, and other issues. 
In business, they have clearly been essential for dealing with problems of marketing, 
insurance and the like. 

While analytical methods, developed for organized simplicity, become impractical 
for even a modest number of variables, say five variables, the relevance and precision of 
statistical methods increase with an increase in the number of variables involved. These 
two types of methods are thus highly complementary. They cover the two extremes of 
the complexity spectrum. Although complementing each another, the two kinds of 
methods cover in fact only a tiny fraction of the whole spectrum of complexity. This 
means, in turn, that the whole complexity spectrum except its extreme ends is 
methodologically underdeveloped in the sense that neither analytical nor statistical 
methods are adequate to cope with it. Problems that are associated with this 
methodologically underdeveloped middle region in the complexity spectrum are 
usually called problems of organized complexity for reasons which are well described by 
Warren Weaver [WEI]: 

This new method of dealing with disorganized complexity, so powerful an advance 
over the earlier two-variable methods, leaves a great field untouched. One is tempted 
to oversimplify, and say that scientific methodology went from one extreme to the 
other-from two variables to an astronomical number-and left untouched a great 
middle region. The importance of this middle region, moreover, does not depend 
primarily on the fact that the number of variables involved is moderate-large 
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compared to two, but small compared to the number of atoms in a pinch of salt. The 
problems in this middle region, in fact, will often involve a considerable number of 
variables. The really important characteristic of the problems of this middle region, 
which science has as yet little explored or conquered, lies in the fact that these 
problems, as contrasted with the disorganized situations with which statistics can 
cope, show the essential feature of organization. In fact, one can refer to this group of 
problems as those of organized complexity . ... These new problems, and the future 
of the world depends on many of them, requires science to make a third great 
advance, an advance that must be even greater than the nineteenth-century conquest 
of problems of simplicity or the twentieth-century victory over problems of 
disorganized complexity. Science must, over the next 50 years, learn to deal with 
these problems of organized complexity. 

331 

Instances of problems with the characteristics of organized complexity are 
abundant, particularly in the life, behavioral, social, and environmental sciences, as well 
as in applied fields such as modern technology or medicine. Some of the problem areas 
that involve organized complexity are especially profound, such as cancer research, the 
study of aging, or the rich area of difficult and diverse problems associated with modern 
technology. This last area is well characterized by George B. Dantzig in his 1979 
Distinguished Lecture at the International Institute for Applied Systems Analysis in 
Laxenburg, Austria, an institute that has played an important role in this new thrust of 
science into the domain of organized complexity: 

It is not easy to paint a picture of just how complex modern technology is. One way 
to start is to list the activities of a small town. By using the classified section of the 
telephone directory, I can list a few activities of the town of Richmond, California. 
Here are those that begin with the letters Br: Bridge Builders, Bridge Tables, 
Broadcasting Stations, Brochures, Brokers, Bronze, Brushes, Brooches, Brakes, 
Brandies, Brazing, Bricks, Brick Stain, Bric-a-Brac. I counted over 6,000 activities in 
all. 

Another way to see the diversity of the material side oflife is to look at a catalog 
of electronic supply items that are for sale. There are thousands upon thousands of 
different kinds of resistors, condensers, vacuum tubes, transistors, cables, sockets, 
knobs, switches, dials, circuit boards, cabinets. Look up the number of different 
items listed in a chemical supply catalog or a Sears, Roebuck catalog, and again the 
number of different items runs into many thousands. A modern university can have 
a hundred different departments .. The United States Government has nearly 2,000 
different kinds of offices in San Francisco alone, each presumably carrying out a 
different function for the public good. So far we have spoken only of diversity, but 
complexity has other dimensions. 

The Leontiefinput-output model of the national economy of the United States 
classifies industries into about 400 major types and requires data for each of these 
industries about how much it shipped (or received) from every other industry. The 
resulting 400 x 400 table contains 160,000 numbers. Each region of the country has 
such an input-output table, and there are many regions. Each number in an 
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input-output table expresses a dependency of one industry upon another; the 
transactions between regions and industries represent further dependencies; there 
are a great number of cross combinations. Countries depend on each other in the 
same way. 

There are also time dependencies: facilities are built and maintained for future 
use; material is stockpiled for future use; people are trained for future jobs. There are 
loeational dependencies as well: men, material, and facilities are moved to new 
locations, not only on the surface of the globe but below and above. 

While we may easily understand the ins and outs of each small part of this vast 
web of activities, the problem is how to track all the interactions at once. We know 
that the powerful forces of population growth, shortages of raw materials, food, 
energy, growing affluence, and so on, are rapidly reshaping this complexity. There is 
a fear that the structure that interconnects these activities may not hold up very well 
under these stresses. We see the possibility of all kinds of system failure if we let the 
changes go on uncontrolled. 

By definition, systems with the characteristics of organized complexity are rich in 
factors that cannot easily be justified as negligible. And, by the same token, they are not 
sufficiently complex and random to yield meaningful statistical averages. That means 
that they are susceptible to neither of the two simplification strategies invented by 
science. And, yet, simplification is unavoidable in most instances. Even if a problem 
regarding a highly complex system can be successfully handlep without any simplifi
cation by a computer, the solution must be eventually reduced to a level of complexity 
that is acceptable to the mind of, say, a decision maker who is in a position to utilize it. 
Since neither the Newtonian nor statistical simplification strategies are applicable, new 
avenues to the simplification of systems are needed. In general, a good simplification 
should minimize the loss of relevant information with respect to the achieved reduction 
of complexity. Some ideas along these lines are discussed in Chapters 3 and 4. 

One way of dealing with very complex systems that posse&s the characteristics of 
organized complexity, perhaps the most significant one, is to allow imprecision in 
describing properly aggregated data. Here, the imprecision is not of a statistical nature, 
but rather of a more general modality, even though the possibility of imprecise 
statistical descriptions is included as well. The mathematical apparatus for this new 
modality, which is recognized under the name "theory of fuzzy sets," has been under 
development since the mid-1960s. To describe the essence and significance of this new 
theory, I can do no better than to quote Lotfi A. Zadeh, its founder [ZA4]: 

Given the deeply entrenched tradition of scientific thinking which equates the 
understanding of a phenomenon with the ability to analyze it in quantitative terms, 
one is certain to strike a dissonant note by questioning the growing tendency to 
analyze the behavior of humanistic systems as if they were mechanistic systems 
governed by difference, differential, or integral equations. 

Essentially, our contention is that the conventional quantitative techniques of 
system analysis are intrinsically unsuited for dealing with humanistic systems or, for 
that matter, any system whose complexity is comparable to that of humanistic 
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systems. The basis for this contention rests on what might be called the principle of 

incompatibility. Stated informally, the essence of this principle is that as the 
complexity of a system increases, our ability to make precise and yet significant 
statements about its behavior diminishes until a threshold is reached beyond which 
precision and significance (or relevance) become almost mutually exclusive charac
teristics.! It is in this sense that precise quantitative analyses of the behavior of 
humanistic systems are not likely to have much relevance to the real-world societal, 
political, economic, and other types of problems which involve humans either as 
individuals or in groups. 

An alternative approach ... is based on the premise that the key elements in 
human thinking are not numbers, but labels offuzzy sets, that is, classes of objects in 
which the transition from membership to non-membership is gradual rather than 
abrupt. Indeed, the pervasiveness of fuzziness in human thought processes suggests 
that much of the logic behind human reasoning is not the traditional two-valued or 
even multi valued logic, but a logic with fuzzy truths, fuzzy connectives, and fuzzy 
rules of inference. In our view, it is this fuzzy, and as yet not well-understood, logic 
that plays a basic role in what may well be one of the most important facets of 
human thinking, namely, the ability to summarize information-to extract from the 
collections of masses of data impinging upon the human brain those and only those 
subcollections which are relevant to the performance of the task at hand. 

By its nature, a summary is an approximation to what it summarizes. For many 
purposes, a very approximate characterization of a collection of data is sufficient 
because most of the basic tasks performed by humans do not require a high degree of 
precision in their execution. The human brain takes advantage of this tolerance for 
imprecision by encoding the "task-relevant" (or "decision-relevant") information 
into labels of fuzzy sets which bear an approximate relation to the primary data. In 
this way, the stream of information reaching the brain via the visual, auditory, 
tactile, and other senses is eventually reduced to the trickle that is needed to perform 
a specific task with a minimal degree of precision. Thus, the ability to manipulate 
fuzzy sets and the consequent summarizing capability constitute one of the most 
important assets of the human mind as well as a fundamental characteristic that 
distinguishes human intelligence from the type of machine intelligence that is 
embodied in present-day digital computers. 

Viewed in this perspective, the traditional techniques of system analysis are not 
well suited for dealing with humanistic systems because they fail to come to grips 
with the reality of the fuzziness of human thinking and behavior. Thus to deal with 
systems radically, we need approaches which do not make a fetish of precision, rigor, 
and mathematical formalism, and which employ instead a methodological frame

work which is tolerant of imprecision and partial truths. 

1 A corollary principle may be stated succinctly as, 'The closer one looks at a real-world problem, the 
fuzzier becomes its solution." 

333 

Methodological tools for dealing with systems problems in the categories of 
organized simplicity or disorganized complexity have reached a fairly satisfactory stage 
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of development, and are readily available in terms of various statistical, numerical 
analysis, and symbol manipulation packages of computer software. On the other hand, 
systems problems in the category of organized complexity are still methodologically 
underdeveloped. It is the main purpose of the GSPS to improve this situation. 

6.3. MEASURES OF SYSTEMS COMPLEXITY 

Our views regarding the concept of "complexity" have tended to be as richly varied 

as complexity itself 

-ROBERT ROSEN 

In the context of systems problem solving, complexity has two roles. In its first role, 
it represents a property of systems; in its second role, it is a property of systems 
problems. Let these two kinds of complexity be referred to as systems complexity and 
problem complexity, respectively. 

This section is devoted solely to systems complexity. Some aspects of problem 
complexity, which is often called computational complexity in the literature, are 
discussed in Sections 6.4 and 6.5. 

In the GSPS, systems have many different faces, each represented by one of the 
epistemological system types introduced in Chapters 2-5. As a consequence, the 
complexities associated with these types of systems have many faces as well. That is, 
different system types in the epistemological hierarchy give the notion of complexity 
different meanings, each of which requires a special treatment. 

Notwithstanding the differences in complexities of the various system types, two 
general principles of systems complexity can be recognized; they are applicable to any of 
the system types and can thus be utilized as guidelines for a comprehensive study of 
systems complexity. 

According to the first general principle, the complexity of a system (of any type) 
should be proportional to the amount of information required to describe the system. 
Here, the term "information" is used solely in a syntactic sense; no semantic or 
pragmatic aspects of information are employed. One way of expressing this descriptive 
complexity, perhaps the simplest one, is to measure it by the number of entities involved 
in the system (variables, states, components) and the variety of interdependence among 
the entities. Indeed, everything else being the same, our ability to understand or cope 
with a system tends to decrease when the number of entities involved or the variety of 
their interconnections increase. There are, of course, many different ways in which 
descriptive complexity can be expressed. Each of them, however, must satisfy some 
general requirements formulated as follows. 

Let X denote the set of all systems of a particular epistemological type, let 9 (X) 

denote the power set of X, and let ex denote a measure of descriptive.complexity within 
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the set X. Then, C x is a function 

that satisfies the following requirements (axioms): 

(Cl) Cx (0) = 0; 
(C2) if A c: B, then C x(A) ::;; C x (B); 

(C3) if A is a homomorphic image of B, then C x(A) ::;; C x(B); 

(C4) if A and B are isomorphic, then C x(A) = C x (B); 
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(C5) if (i) A n B = 0, (ii) A and B do not interact with each other, and 
(iii) neither A nor B is a homomorphic image of the other, then C x(A u B) 

= C x(A) + C x(B). 

Requirements (Cl) and (C2) guarantee that complexity of any system be 
characterized by a non-negative number. Requirements (C2) and (C3) deal with 
fundamental properties of monotonicity: complexity should not increase when the 
given set of systems is reduced or when less detail is distinguished in the systems. 
Requirement (C4) is obvious: when some (any) entities in the given systems are 
relabelled, everything else remaining the same, the compleJCity should not change. 
Requirement (C5) describes a desirable property of additivity: if two sets of systems are 
taken together that in all relevant respects have nothing in common (no common 
systems, no interaction, no morphic relationship), then the total complexity should be 
equal to the sum of the two individual complexities. 

According to the second general principle, systems complexity should be 
proportional to the amount of information needed to resolve any uncertainty associated 
with the system involved. Here, again, syntactic information is used, but information 
that is based on a relevant measure of uncertainty (Sec. 3.5). 

Systems complexity is primarily studied for the purpose of developing sound 
methods by which systems that are incomprehensible or unmanageable can be 
simplified to an acceptable level of complexity. When we simplify a system, we want to 
reduce both the complexity based on descriptive information and the complexity based 
on the uncertainty information. Unfortunately, these two complexities conflict with 
each other. In general, when we reduce one, the other increases or, at best, remains 
unchanged. Based on these considerations, a general problem of simplification can be 
formulated as follows: 

Given a system of some particular epistemological type, let fE denote the set of all 
d " its meaningful simplifications. Let ::;;. and::;; denote the two complexity orderings on fE, 

based on the descriptive information and uncertainty information, respectively. Both of 
these orderings are, in general, only weak orderings (i.e., reflexive and transitive 

a p 
relations on fE). Let::;;, ::;;, ... denote other (optional) orderings on fE (weak, partial or 
total), which express special preferences specified by the user of the given system. In 
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* terms of all the orderings involved, we define a joint preference ordering ::; by the 
following formula 

* d u a P 
(Vx, yE .'!') (x::; y¢>x ::; y and x ::; y and x ::; y and x ::; y and ... ) 

The solution set .'!'s of the simplification problem consists of those systems in f!£ that are 

* either equivalent or incomparable in terms of the joint preference ordering ::;. 
Formally, 

* * .'!'s = {XE .'!'/(VYEX) (y::; x =>x ::; y)}. (6.1) 

A reader familiar with previous chapters of this book should now be able to 
associate this general formulation of the simplification problem with these special cases 
of the problem: 

-the problem of determining admissible behavior systems (Sec. 3.6); 
-the problem of simplifying generative systems by resolution coarsening (Sec. 

3.9); 
-the reconstruction problem (Sec. 4.7). 

All these problems conform to the general simplification problem, even though they 
differ from each other in the set .'!' and mathematical properties of the preference 

d n 

orderings ::; and ::; defined on .'!'. 

The basic philosophy of the GSPS is to allow the user to define his own preference 
orderings for systems under consideration. If the user indicates that complexity is one of 
the preference orderings, but he does not define his own measure of complexity, the 
GSPS should offer him a list of possible options. If the user does not make a choice, the 
GSPS should use some measure of complexity as a designated default option. 

The complexity measures offered to the user as possible options should be 

measures that are well established and, of course, must be applicable to the problem 
for which they are considered. An overview of the literature dealing with various types 
of complexity measures is included in the Notes to this chapter. 

6.4. BREMERMANN'S LIMIT 

No data processing system, whether artificial or living, can process more than 

2 x ]047 bits per second per gram of its mass. 

-HANS J. BREMERMANN 

This conjecture is the central theme of a paper by Hans Bremermann, which was 
published in 1962 [BRl]. He derives it by the following considerations, in which the 
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phrase "processing of N bits" means the transmission of that many bits over one or 
several channels within the computing system. 

.. It is obvious that information which is to be acted upon by a machine must be 
physically encoded in some manner. Assume that it is encoded in terms of energy levels 
within the interval [0, E] of energy of some sort; E is viewed as the total energy available 
for this purpose. Assume further that energy levels can be measured with an accuracy of 
only t1E. Then, the most refined encoding is defined in terms of markers by which the 
whole interval is divided into N = E/ t1E equal subintervals, each associated with the 
energy amount t1E. If at each instant no more than one of the levels (represented by the 
markers) is occupied, then 

log2 (N + 1) 

is the maximum number of bits that are representable by energy E; N + 1 is used here to 
account for the case in which none of the levels is occupied. If, instead of one marker 
with energy levels in [0, E], K markers (2 ::; K ::; N) are used simultaneously, then 

K log2 (1 + N/K) 

bits become representable. The optimal utilization of the available amount of energy E 
is obtained when N markers with levels in the interval [0, t1E] are used. In this optimal 
case, N bits of information can be represented. 

In order to represent more information by the same amount of energy, it is 
desirable to reduce t1E. This is possible only to a certain extent since the resulting levels 
must be distinguished by some measurement process which, regardless of its nature, 
always has some limited precision. The extreme case is expressed by the Heisenberg 
principle of uncertainty: energy can be measured to the accuracy of t1E if the inequality 

is satisfied, where M denotes the time duration of the measurement, h = 6.625 
x 10- 27 ergs/sec is Planck's constant, and t1E is defined as the mean deviation from the 

expected value of the energy involved. This means that 

N<EM 
- h (6.2) 

Now, the available energy E can be expressed in terms of the equivalent amount of 
mass m by Einstein's formula 

where c = 3 x 1010 cm/sec is the velocity oflight in a vacuum. If we take the upper (most 
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optimistic) bound of N in (6.2), we get 

N = mc2 At 
h 

Substituting the numerical values for c and h, we obtain 

For a mass of 1 gram (m = 1) and time of 1 sec (At = 1), we obtain the value 

which implies the conjecture. ~ 

(6.3) 

(6.4) 

Using the limit of information processing obtained for one gram of mass and one 
second of processing time, Bremermann then calculates the total number of bits 
processed by a hypothetical computer the size of the Earth within a time period equal to 
the estimated age of the Earth. Since the mass and age of the Earth are estimated to be 
less than 6 x 1027 g and 1010 y, respectively, and each year contains approximately 
3.14 x 107 sec, this imaginary computer would not be able to process more than 
2.56 x 1092 bits or, when rounding up to the nearest power of ten, 1093 bits. The last 
number-1093-is usually referred to as Bremermann's limit and problems that require 
processing more than 1093 bits of information are called transcomputational problems. 

Bremermann's limit seems at first sight rather discouraging for system problem 
solving, even though it is quite conservative (more reasonable assumptions would lead 
to a number smaller than 1093 ). Indeed, many problems dealing with systems of even 
modest size exceed it in their information processing demands. Consider, for example, a 
system of n variables, each of which can take k different states. The set of all overall 
states of the variables consists clearly of kn states. In each particular system, however, the 
actual overall states are restricted to a subset of this set. There are 2k" such subsets. 
Suppose we need to select, identify, distinguish, or classify one system from the set of all 
possible systems of this sort. Then, under the assumption that the most efficient method 
of searching is used, in which each bit of information (the answer to a dichotomous 
question) allows us to cut the remaining choices in half, 

bits of information have to be processed. The problem becomes transcomputational 
when 
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That happens, e.g., for the following values of k and n: 

k 2 3 4 5 6 7 8 9 10 

n 308 194 154 133 119 110 102 97 93 

The problem of transcomputationality arises in various contexts. One of them is 
pattern recognition. Consider, for example, a q x q spatial array of the chessboard type, 
each square of which can have one of k colors. There are clearly k" color patterns, where 
n = q2. Suppose we want to determine the best classification (according to certain 
criteria) of these patterns. This requires a search through all possible classifications of 
the patterns. In the case of only two classes, the problem becomes isomorphic to the 
previous one. For two colors, for example, the problem becomes transcomputational 
when the array is 18 x 18; for a 10 x 10 array, the problem becomes transcomputational 
when nine colors are used. This pattern recognition problem is directly relevant to 
physiological studies of the retina, but its complexity is tremendous. The retina contains 
about a million light-sensitive cells. Even if we consider (for simplicity) that each of the 
cells have only two states (active and inactive), the attempt to study the retina as a whole 
would require the processing of 

21.000.000 == 10300.000 

bits of information. This is far beyond Bremermann's limit. 
Another context in which the same problem occurs is the area of testing large-scale 

integrated digital circuits. These are tiny electronic chips with considerable complexity 
and a large number of inputs and outputs. For properly defined electric signals (each, 
usually, with two ideal states), the individual outputs should represent some specific 
logic functions of the logic variables associated with the inputs. To test a particular 
integrated circuit means to analyze it as a "black box": to determine the actual logic 
functions it implements, solely by manipulating the input variables and observing the 
output variables. For each output variable, the testing problem is thus basically the same 
as the problem previously discussed for k = 2 (unless a mUltiple valued logic is used). It 
follows that testing of circuits, for example, with 308 inputs and one output is a 
transcomputational problem. However, it is well known that the practical complexity 
limits of this testing problem are considerably lower. Some currently manufactured 
large-scale integrated circuits cannot be in fact completely tested. The focus is thus On 
developing testing methods that can be practically implemented and guarantee only 
that the testing be almost complete, that, say, well over 90 % of all possibilities be tested. 

A more detailed characterization of the complexity of this problem, from the 
practical domain to Bremermann's limit, is expressed by Figure 6.1. The figure shows 
the dependence of the time (in years) required to select (identify, classify, distinguish, 
etc.) one logic function of n variables under the consideration of different information 
processing rates in the range from 10 through 10100 bits per second. Two significant 
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INFORMATION PROCESSING RATES 

10 10 1 0 1020 1030 1040 1050 1060 1070 1080 1090 10100 
1010~ ____ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~~ __ ~ __ ~ __ ~~ 
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BREMERMANN'S 
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Figure 6.1. Time required to select or identify one logic function of n variables for information 
processing rates of 10, 1010, •.. , 10100 bits per second. 

values of time are also shown in the figure: L indicates the approximate age of the oldest 
fossil records of life on the Earth; M shows the approximate time since men first 
appeared on the Earth. 

The testing example is in no way exceptional. Genuine systems problems are 
notorious for their huge demands on information processing capabilities. This point is 
illustrated by specific examples on various occasions elsewhere in this book. It is also 
well depicted by Bremermann in the conclusion of his paper (BRl]: 

The experiences of various groups who work on problem solving, theorem proving 
and pattern recognition all seem to point in the same direction: These problems are 
tough. There does not seem to be a royal road or a simple method which at one 
stroke will solve all our problems. My discussion of ultimate limitations on the 
speed and amount of data processing may be summarized like this: Problems 
involving vast numbers of possibilities will not be solved by sheer data processing 
quantity. We must look for quality, for refinements, for tricks, for every ingenuity 
that we can think of. Computers faster than those of today will be a great help. We 
will need them. However, when we are concerned with problems in principle, 
present-day computers are about as fast as they ever will be. 

If a problem is transcomputational, it is obvious that it can be dealt with only in 
some modified form. It is desirable to modify it no more than is necessary to make it 
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manageable. The most natural way of modifying a problem is to soften its 
requirements. For instance, a requirement of getting the best solution may be replaced 
with a requirement of getting a good solution, instead of requiring a precise solution we 
may accept an approximate solution, and so on. Such softening of requirements permits 
the use of heuristic methods, in which vast numbers of unpromising possibilities are 
ignored, or approximate (fuzzy) methods, in which substantial aggregation takes place. 

The GSPS should be able to assist the user in estimating the complexity of his 
problem and, if the problem is found unmanageable within the available computational 
resources, should suggest some feasible modifications in it. Bremermann's limit allows 
one to make only the most rudimentary categorization of systems problems by their 
complexities. It does not say anything about the actual, practical computational limits. 
Nevertheless, it is a useful benchmark for a preliminary evaluation of each problem 
situation, as emphasized by Ashby [AS12]: 

One of its most obvious consequences, yet one almost universally neglected today, is 
that, before the study of a complex system is undertaken, at least a rough estimate of 
its informational demands should be made. Should the estimate be 2000 bits we have 
little to worry about, but should it prove to be 10300 bits we would know that our 
whole strategic approach to the system needs re-formulating. 

This simple benchmark-1093-must be supplemented, of course, by sharper bounds 
on problem complexity, derived for specific computer systems. 

As emphasized in this book on a number of occasions, one of the main goals of the 
GSPS is to achieve a powerful man-machine (user-computer) symbiosis, in which the 
two symbionts would complement each other in their capabilities to perform certain 
problem-solving tasks efficiently. Although such a symbiosis, when properly im
plemented, seems to be the best way in dealing with complex problems, Bremermann's 
limit still cannot be overcome thereby. In fact, the limit is an indicator of fundamental 
limits to our knowledge, as Ashby explains [AS7]: 

The most obvious fact is that we, and our brains, are themselves made of matter, and 
are thus absolutely subject to the limit. Not only are we subject as individuals, but 
the whole cooperative organization of World Science is also made of matter, and is 
therefore subject to it. Thus both the total information that I can use personally, and 
the information that World Science can use, are limited, on any ordinary scale, to 
about 1080• bits. Whatever our science will become in the future, all will lie below 
this ceiling. 

We cannot claim any special advantage because of our pre-eminent position in 
the world of organisms. We have been shaped, and selected to be what we are, by the 
process of natural selection. As a selection, this process can be measured by an 

• Ashby derives the value of 1080 from the Bremermann limit for one second and one gram by 
considering "centuries of time and tons of computers" (e.g., about ten thousand centuries 
and lOIS tons of mass). It is not important for the argument whether we take 1080 or 1093. 
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information-measure; it is therefore subject to its limits. In any type of selection, 
under any planetary conditions, a planetary surface made of matter cannot produce 
adaptation faster than the rate of the limit. However good we may think we are, 1080 

measures something that we do not exceed. The science of the future will be built by 
brains that cannot have had more than 1080 bits used in their preparations, and they 
themselves will advance only by something short of 1080• This is our informational 
universe: what lies beyond is unknowable. 

6.5. COMPUTATIONAL COMPLEXITY 

There is no doubt that the results about what can and cannot be effectively computed 

or formalized in mathematics have had a profound influence on mathematics, and, 
even more broadly, they have influenced our view of our scientific methods. 

-JURIS HARTMANIS 

Bremermann's limit (discussed in the previous section) works well, as a simple 
benchmark, for problems whose information processing demands exceed it, but it does 
not say much about the remaining problems. Even if a problem is not rejected by 
Bremermann's limit, it may still be practically intractable. A more refined understand
ing of the notion of problem complexity is thus needed. 

Computational properties of problems are studied under the general theory of 
algorithms. This general theory includes three large subject areas: the theory of 
computability, design of algorithms, and the theory of computational complexity. It is 
beyond the scope of this book to cover these areas in any depth. It is desirable, however, 
to provide the reader with a brief overview, focusing primarily on computational 
complexity, of those results and issues that are of particular significance to systems 
problem solving. No proofs of the summarized results are presented here. However, a 
guide to the literature on computational complexity, where the proofs and other details 
can be found, is given in the Notes to this chapter. 

An algorithm is understood intuitively as a set of instructions, expressed in some 
language, for executing a sequence of operations for solving a problem of some specific 
type. Algorithms are required to be finite, i.e., each algorithm must terminate after a 
finite number of steps (operations) have been executed. 

The intuitive notion of an algorithm was formalized in several ways, including 
formalizations based on the concepts of Turing machines, Markov algorithms, and 
recursive functions, which were all proven to be equivalent. One of the concepts-that 
of a Turing machine-is envisioned as a simple device that consists of a finite-state 
control unit and a tape. The control unit has a memory, which makes it capable of being 
in anyone of a finite set of states, say set Z = {Z l' Z 2, ... , zn}. The tape is potentially 
infinite in both directions, and is marked off along its length into spaces of equal size. 
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Each of these spaces, referred to as cells, has written on it a symbol from a finite set of 
symbols, say set X = {xo, Xl' ... , xm }. One of the symbols, say symbol x o, is always 
interpreted as a blank space (empty cell). Communication between the control unit and 
tape is provided by a read-write head, which is capable of reading symbols from the tape 
and writing over the symbols that are written on it. Only one cell of the tape is accessible 
to the head at any time. 

The control unit of a Turing machine operates in discrete steps. In each step it 
replaces the current state with a new one, and performs a single operation of one of the 
following three types: 

1. it replaces the current symbol on the tape with a new one; 
11. it moves the tape by one cell to the left or right; 

Ill. it stops the computation (the so-called halt operation). 

The new state as well as the operation performed are uniquely determined by the 
current state and the symbol read on the tape. 

Let Zc' Zn denote the current and next state of a Turing machine, respectively, let Xr 

denote the symbol that is read on the tape, and let Yp denote the operation performed. 
Then, given an initial string of symbols on the tape (any cell for which a symbol is not 
given is assumed to be blank) and a particular initial state, a computation on the Turing 
machine is defined by an ordered set of quadruples 

If no two quadruples in the set are allowed to begin with the same pair Z<, x" the Turing 
machine is said to be deterministic; otherwise, it is said to be nondeterministic. 

A hypothesis that has become known as Church's thesis (or the Church-Turing 
thesis), and which has been generally accepted, states that any function regarded 
naturally as computable can be computed on a deterministic Turing machine. 
According to this hypothesis, a Turing machine is taken to be a precise formal 
equivalent of the intuitive notion of an algorithm. The hypothesis cannot be proven 
mathematically, but it is well justified by informal arguments and empirical evidence. It 
can be overthrown only by proposing an alternative formalization of computation, 
generally acceptable on intuitive grounds and capable of describing computation that 
are beyond the capabilities of Turing machines. The existence of such a formalization is 
considered highly unlikely. 

In general, a problem is considered unsolvable if no algorithm exists by means of 
which a solution can be obtained. The notion of deterministic Turing machines 
together with Church's thesis have made possible the study of the existence of 
algorithms for various problems in a formal manner. To prove that a problem is 
unsolvable, it is sufficient to prove that it cannot be solved by a Turing machine. Such 
proofs of unsolvability have been obt.ained for a number of problems. 

Results regarding problem unsolvability should be incorporated in the GSPS only 
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insofar as they concern problems that can be identified within its framework. If an 
identifiable problem that is known to be unsolvable is requested by a user, the GSPS 
must reject the problem, but, at the same time, it should provide the user with adequate 
information regarding its unsolvability, including relevant references to the literature. 

Unsolvable problems form one of three primary classes of problems. The second 
class consists of problems that have not been proven unsolvable, but for which no 
algorithms are known for solving them. These are thus problems whose solvability 
status has not been resolved as yet. If any identifiable problem of this kind is requested 
by a user of the GSPS, he should be informed about its uncertain status and nothing 
more (unfortunately) can be done for him. 

All remaining problems are solvable. That is, they are solvable in principle. In 
practice, however, many of them cannot be solved due to their excessive demands on 
computing resources such as computing time and memory size. Since the required 
computing time is usually the single factor that determines whether or not a problem is 
practically solvable, computational complexity has been predominantly studied in 
terms of this single resource. 

The practical solvability of a problem depends on 

I. the algorithm employed for solving the problem; 
11. the size of the particular systems involved in the problem; 

111. the computational power of the computing resources available. 

Given a particular algorithm for solving a problem, it is convenient to express its time 
requirements in terms of a single variable that represents the size of the systems 
involved in the problem. This variable, which is often called the size of a problem 
instance, is supposed to express the amount of input data needed to describe the 
particular systems. 

Given a particular systems problem instance, let n denote its size. Then, the time 
requirements of a specific algorithm for solving the problem are expressed by a function 

(6.5) 

such thatf (n) is the largest amount of time needed by the algorithm to solve a problem 
instance of size n. Function f is usually called a time complexity function. 

It has been recognized that it is useful to distinguish two classes of algorithms by 
the rate of growth of their time complexity functions. One class consists of algorithms 
whose time complexity functions can be expressed in terms of a polynomial. They are 
called polynomial time algorithms. Since the degree of each polynomial is considerably 
more significant, especially for large values of n, than its coefficients and lower-order 
terms, it is useful to classify polynomial time complexity functions by their order. A 
functionfis said to be of complexity 0 (nk), where k is a positive integer, if and only if 
there is a constant c > 0 such that 
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for all n ;;::: no, where no is a positive integer that usuaIly represents the smaIlest size of 
the problem instances involved. For example, function 

f(n) = 25n2 + 18n + 31 

is of complexity 0 (n 2 ) since 
f(n) 5, 74n2 

when no = 1, or 

when no = 2, etc. 
The second class of algorithms consists of those whose time complexity functions 

are not bounded by complexity 0 (nk) for some k. They are usually referred to as 
exponential time algorithms. 

The distinction between the polynomial and exponential time algorithms is 
significant, especially when considering large problem instances. This is illustrated in 
Table 6.1 by showing differences in growth rates for several time complexity functions. 

TABLE 6.1 
Illustration of Growth Rates of Several Polynomial and Exponential Time Complexity Functions 

Time Problem instance size: n 
complexity 

function 10 20 30 40 50 100 

n 0.000001 0.00001 0.00002 0.00003 0.00004 0.00005 0.0001 
sec sec sec sec sec sec sec 

n2 0.000001 0.0001 0.0004 0.0009 0.0016 0.0025 0.01 
sec sec sec sec sec sec sec 

nS 0.000001 0.1 3.2 24.3 1.7 5.2 2.8 
sec sec sec sec min min hr 

nlo 0.000001 2.8 118.5 18.7 3.3 31.0 3.2 x 104 

sec h days yr centuries centuries centuries 

2" 0.000002 0.001 1.0 17.9 12.7 35.7 4 x 1014 

sec sec sec min days yr centuries 

3" 0.000003 0.059 58 6.5 3,855 2 x 108 1.6 X 1032 
sec sec min yr centuries centuries centuries 

10" 0.00001 2.8 3.2 x 104 3.2 X 1014 3.2 X 1024 3.2 X 1034 3.2 X 1084 

sec hr centuries centuries centuries centuries centuries 

22" 0.000004 5.7 x 10292 103'10' 103'10' 103'10" 103.10" _ 103'10" 

sec centuries centuries centuries centuries centuries centuries 

n" 0.000001 2.8 3.3 x 1010 6.5 X 1028 3.8 X 1048 _ 2.8 X 1069 _ 3.2 X 10184 

sec h centuries centuries centuries centuries centuries 

n! 0.000001 3.6 771.5 8.4 x 1016 2.6 X 1032 _ 9.6 X 1048 _ 2.9 X 10142 

sec sec centuries centuries centuries centuries centuries 



www.manaraa.com

346 CHAPTER 6: COMPLEXITY 

The computing times in this table are based on the assumption that the computing is 
performed at a rate of one million operations per second. When comparing, for 
instance, n2 with n10, we can see that the degree of a polynomial time complexity 
function has a considerable effect on practical limitations of the corresponding 
algorithms. However, polynomial time algorithms are substantially more responsive 
than exponential time algorithms to increases in computing power (except for small 
values of n). This can be seen by comparing plots of some polynomial and exponential 
time complexity functions in Figure 6.2 and, even more explicitly, by examining the 
actual increases in the ranges of applicability due to increases in computing speed, as 
illustrated by the formulas in Table 6.2. 

Due to the essential differences between polynomial and exponential time 
complexity functions, polynomial time algorithms are considered efficient, while 
exponential time algorithms are considered inefficient. As a consequence, problems for 
which it can be proven that they are not solvable by polynomial time algorithms are 
viewed as intractable, while problems for which polynomial time algorithms are known 
are viewed as tractable. The latter problems are usually called P-problems (i.e., solvable 
in polynomial time); the set of all such problems is called the problem class P. 

It is known that differences among standard schemes used in practice for encoding 
problems as well as differences in the computer types used do not affect the classification 
of problems into tractable and intractable. Standard encoding schemes and computer 
types are known to differ from each other at most polynomially. Alternative encoding 
schemes or computer types may thus influence the practical range of solvability of a 
problem, but they do not affect its tractability status. 

It turns out that for most of the problems encountered in practice, neither is a 

1020 
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Figure 6.2. Plots of some typical time complexity functions: (a) polynomial, (b) exponential. 
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TABLE 6.2 
Effects of Increases in Computing Speed on Problem-Solving Capabilities for Some 

Time Complexity Functions 

Size of largest problem instance solvable in some unit time with 

Time current technology technology technology technology 

complexity computer hundred times thousand million X times 

function technology faster times faster times faster faster 

n n! lOOn! I,OOOn! I,OOO,OOOn! Xn! 

nZ nz 10n2 31.6nz I,OOOnz JXnz 

nS n3 2.Sn3 3.98n3 IS.8n3 ;JXn3 

n!O n4 l.S8n4 2n4 3.98n4 0¥n4 

2" ns ns +6.64 ns +9.97 ns + 19.93 ns +logX/log2 

3" n6 n6 + 4.19 n6 +6.29 n6+ 12.S8 n6 + log X/log 3 

10" n7 n7 +2 n7 +3 n7 +6 n7 +logX 

polynomial time algorithm known to solve them, nor have they been proven intractable. 
A common trait oof such problems is that they can be "solved" in polynomial time by 
nondeterministic computers such as nondeterministic Turing machines. Such problems 
are called N P-problems (nondeterministic polynomial time problems) and form a set 
called the problem class N P. The term "solve" is used here in the sense that if the machine 
guesses the solution, it can verify its correctness in polynomial time. The notion of a 
nondeterministic polynomial time algorithm is thus used solely as a convenient 
definitional device for capturing the notion of polynomial time verifiability of a 
proposed (guessed) solution of the actual problem. It is known that any NP problem 
can be solved by a deterministic algorithm with time complexity 0 (2 PIn»), where p is a 
polynomial function. 

The class NP contains the class P because any problem that is solvable in 
polynomial time on a deterministic Turing machine is also solvable (i.e., verifiable) in 
polynomial time on a nondeterministic Turing machine. A considerable number of NP
problems have been proven to have the property that every other NP-problem can be 
converted to them in polynomial time. Such problems are distinguished as NP-complete 
problems. 

Since the class NP consists of many practically important problems, it is highly 
desirable to resolve its status. The question of whether or not NP-problems are 
intractable is therefore one of the most important questions in mathematics, computer 
science, and systems science. Its implications for systems problem solving are quite 
profound. The question is often stated in the form "is NP = P?". It can be answered by 
proving for any of the NP-complete problems that it is either a P-problem (i.e., solvable 
in polynomial time) or a problem inherently intractable (i.e., solvable only in 
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exponential time). If anyone of the NP-complete problems is proven intractable, then 
NP =1= P. If, on the other hand, such a problem is proven tractable, then NP = P. Since 
there are strong indications that NP =1= P under the usual rules of inference, the question 
becomes primarily one of discovering some unorthodox rules of inference under which 
anyone of the NP-complete problems could be proven tractable. 

The classification of problems from the standpoint of their solvability and 
computational complexity is summarized in Figure 6.3. The class denoted as coNP 
consists of problems that are complementary to the NP-problems in the sense that their 
answers are complements of the answers obtained for the corresponding NP-problems. 
It is not known whether NP = coNP, but it is known that the intersection NP n coNP 
is not empty and contains all P-problems as well some other problems. 

Although computational complexity has been predominantly studied in terms of 
the time it takes to perform a computation, the amount of computer memory required is 
frequently just as important. This requirement is usually referred to as the space 

requirement. It can be studied in terms of a space complexity function, analogous to the 
time complexity function. It is known, however, that any problem solvable in 
polynomial time can be solved in polynomial space as well. Indeed, the number of cells 
operated on by the read-write head of a Turing machine in a particular computation 
(which represents the space requirement) cannot exceed the number of steps involved in 
the computation (which represents the time requirement). It is not certain, however, 
whether all problems that are solvable in polynomial space are solvable in polynomial 

UNSOLVABLE PROBLEMS 

PROBLEMS WHOSE SOL VABI LlTY 
IS UNDEC IDED 

PROVABLY INTRACTABLE PROBLEMS 

Figure 6.3. Classification of prob
lems from the standpoint of their 
solvability and tractability. 
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time. It is for this reason that the time complexity is used to classify problems as either 
tractable or intractable. In practice, however, both of these requirements are equally 
important. 

6.6. COMPLEXITY WITHIN GSPS 

Associated with the learning process is the complexity of describing, the d
complexity. It is measured by the difficulty associated with extracting the 

description of a system . ... associated with the interpretation process is the 
complexity of interpreting, the i-complexity. It is measured by the difficulty 

associated with extracting the interpretation (meaning) of a description. 

-LARS LOFGREN 

In architectural considerations regarding the GSPS, various issues involving 
complexity of systems or problems arise in several contexts. As far as the notion of 
systems complexity is concerned, it has two distinct roles within the GSPS. First, it 
represents a requirement type that is involved in some systems problems identifiable 
within the GSPS framework. Second, it is used to express the size of the systems, which 
are involved in the various problems, for the purpose of estimating the computational 
complexities of specific problem instances. 

Systems complexity as a requirement type in systems problems can be viewed, 
generally, as a basis for defining a preference relation on the set of systems under 
consideration. As such, it is primarily user-oriented. It is thus always desirable that a 
complexity measure, if applicable in a systems problem, be defined by the user. 
However, in some situations, users may not have their own complexity measures and the 
GSPS should be able to offer some options. Furthermore, if the user is unable to select 
one of the suggested options or does not care which one is used, GSPS should proceed 
with one of the options that is declared for the given problem as a default measure of 
systems complexity. 

In general, different epistemological systems types require different measures of 
complexity. Additional variations may then be required, at least in some instances, for 
methodological distinctions within each epistemological systems type. Some obvious 
complexity measures, which seem reasonable as default measures (or measures to be 
offered on the "menu"), are introduced in the context of representative problems in 
Chapters 3-5. 

When systems complexity is intended to express the size of problem instances, on 
the basis of which the time complexity function ofa problem is determined, it is usually 
defined in terms of the length of a description of the systems involved. Since the 
description length depends on the encoding scheme employed, it must be based in each 
case on the encoding scheme actually used in the GSPS implementation for describing 
systems of the given type. 
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Problem complexity arises in the development ofGSPS as well as in its use. During 
its development, various issues of problem complexity are encountered in connection 
with the research on methodological tools. They include, for example: determination of 
time and space complexity functions for particular algorithms and encodings, 
delimitation of boundaries of practical solvability for the individual problems, 
comparison of competing algorithms from the standpoint of their computational 
complexities, research into new algorithms for problems whose current algorithms are 
unsatisfactory from the standpoint of complexity, development of efficient heuristic 
algorithms for intractable problems, and investigation of suitable simplifying assump
tions under which various intractable problems become tractable. 

One of the functions of the GSPS should be a routine analysis of the complexity 
status of each requested problem. A brief report of its results and, if appropriate, a list of 
desirable options should be presented to the user before any further processing is 
initiated. Based on this report, the user may decide to confirm his original request, 
accept one of the proposed options, modify his problem in some fashion, or cancel his 
request altogether. 

Although the complexity analysis may be implemented in a variety of ways, it 
should cover the following fundamental questions. First, it should address the question 
of solvability. If the problem is unsolvable, it must be rejected and, if feasible, some 
meaningful and solvable modifications to it should be suggested to the user. Second, the 
problem should be classified with respect to three fixed values of computational 
complexity; the Bremermann limit (or some less conservative variant of it), a value that 
characterizes the limit of contemporary computer technology (this value must be 
periodically adjusted according to advances in computer technology), and a value that 
represents the actual limit of the specific GSPS realization employed. This leads to four 
rough classes of systems problems that are described in Figure 6.4. They are introduced 
for the purpose of making the user aware of the tractability status of his problem. If the 
problem is fundamentally intractable, he should abandon it and concentrate on some 
restricted and computationally less demanding reformulations. If it is potentially 
tractable, but beyond the capabilities of current computer technology, a reformulation 

GSPS 
real ization 

limit 

Cu rrent 
technology 

limit 

Tractable 
problems 

Problems Problems 
intractable by the GSPS intractable with 

Bremerman n 's 
limit 

Fundamentally 
intractable problems 

realization employed current technology 

Figure 6.4. Rough classification of systems problems by their complexities. 
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is also necessary. However, the original problem need not be disregarded. If sufficiently 
significant, it should be filed and reconsidered again at some point in the future. 

When the requested problem is within the capabilities of current technology, the 
complexity analysis should be more detailed. If the problem can be solved by the 
available GSPS realization, the user should be provided with the estimated computing 
cost. If not solvable, the user should be given a rough characterization of the required 
computer resources (speed, space), as well as approximate computing cost. 

In some application areas, such as weather forecasting, production control, 
engineering testing, or management decision making, a particular value of the largest 
acceptable solution time is often included among the requirements of a systems 
problem. In other contexts, a value of the largest acceptable computer cost is specified. 
Such restrictions must of course be appropriately incorporated in the complexity 
analysis and the resulting report presented to the user. 

It should be emphasized that the size of a problem instance is not the only 
determinant of its computational complexity. That is, problem instances of the same 
type and size may have very different complexities. Most studies in the area of 
computational complexity are oriented primarily to the characterization of the worst 
case problem instances. Although this orientation is theoretically sound, it usually 
results in estimates that are rarely reached in practice and are therefore too pesimistic. 
To ameliorate this situation, the worst case estimates are sometimes supplemented with 
average case estimates. However, such estimates are based on the assumption that all 
problem instances are equally likely, which does not necessarily reflect the actual 
probability distribution of problem instances encountered in practice. The problem of 
determining the actual distributions for various problem types is predominantly an 
empirical problem. One can hope to study this problem by monitoring and analyzing 
problem instances requested by users of the GSPS and other systems problem solving 
packages. 

NOTES 

6.1. The axioms of systems complexity formulated in Section 6.3 are supposed to be as 
general as possible. Although it is possible, in principle, to further generalize them by replacing the 
sum function in axiom (C5) with a general aggregation function, such a generalization does not 
seem to have sufficient intuitive appeal. In any event, the various axiomatic formulations of 
systems complexity that can be found in the current literature are considerably less general than 
that given in Section 6.3 [CAl, G04]. One exception are three axioms of systems complexity by 
Conant [C02], which resemble axioms (C3)-(C5). 

6.2. Systems complexity has been studied from various points of view. The theory of finite 
state automata (or, more generally, finite semigroups) is one special area in which the notion of 
systems complexity has been well developed, basically in terms of the Krohn-Rhodes 
decomposition theorem [AR3, KR4, 5]. Another special kind of complexity, which is well covered 
in the literature, is complexity of sequences of symbols taken from some finite alphabets. Within 
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the GSPS, this kind of complexity is clearly applicable to data systems with totally ordered 
support sets. The complexity of a sequence is usually defined in terms of the number of bits needed 
to describe a minimal computer program (for some fixed computer, say the Turing machine) by 
which the sequence can be reproduced. Various versions of this general approach to complexity of 
sequences are described in the literature by Kolmogorov [K04], Chaitin [CHI, 2], Loveland 
[L03], and others [MA5, SI2]. In all these variants, the notion of complexity is intimately 
linJ(ed to the notions of information and randomness. A good survey of the prominent issues 
associated with this sort of systems complexity is covered in Chapter 5 of a book by Fine [FI2]. 

The complexity of sequences is not the only area in which there is a relationship between 
complexity and information. One area of research on systems complexity focuses on the so-called 
maximum-entropy complexity measures, which are based on the Shannon measure of informa
tion. They were introduced by Ferdinand [FE3] on the basis of the maximum entropy principle, 
which he applied to obtain the prior probability distribution associated with the expected number 
of defects in a system under a given state of knowledge of that system. He also investigated the 
effect of systems modularity (i.e., structure refinement in the sense discussed in Chapter 4) on the 
number of expected defects in the system [FE2] and applied some of these results to computer 
software. He found, using some reasonable assumptions and relevant empirical information, that 
a computer program is subject to the minimum number of defects if it is organized hierarchically 
and the size of the subsystems (subroutines) at each level of the hierarchy is equal to (2n)1/l, where 
n expresses the size of the whole system for which the subsystems are defined. 

Ferdinand's defect complexity has been further investigated by Cornacchio [COlI], George 
[GE2], and Kapur [KAl]. 

There are also some other ways in which the Shannon entropy is used to define systems 
complexity. For example, Van Emden uses it to define complexity as "the way in which a whole is 
different from the composition of its parts" [VA2]. 

Graphs are useful means for describing systems of certain types (e.g., ST-systems, C
structure systems). Some efforts have therefore been made to define the complexity of graphs 
[ALl, M04], but it seems that this subject area has not been developed to its potential as yet. 

Systems complexity has also been studied with respect to the design of engineering systems, 
particularly large-scale systems such as telephone exchanges and digital computers. When the 
components available for constructing a system and the task to be performed by the system are 
precisely defined, one of the complexity issues is to find the minimum number of components 
required. An interesting exposition of this subject area was written by Pippenger [PH]. 

Although this brief survey is representative of the main developments related to systems 
complexity, it is by no means complete. For further information, the reader may consult a 
bibliography on systems complexity [C012]. 

6.3. The initial ideas of computability were introduced in the 1930s by Turing [TV 1], Kleene 
[KLl], Post [P05], and Church [CHlO]. Two formalisms-Turing machines and recursive 
functions-are usually used in current literature. The notion of Markov algorithms [MA4] is also 
used, but considerably less frequently. The area of computability is thoroughly covered in a 
number of books, for example [DAl, R02]. 

Although the significant difference between polynomial and exponential time algorithms 
was already recognized in the mid-1960s, the foundations of the current theory of NP
completeness were established only in the early 1970s, primarily due to contributions by Cook 
[COW] and Karp [KA2]. For further details regarding computational complexity, an excellent 
book by Garey and Johnson is recommended [GA 7]; in addition to comprehensive coverage of 
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the area of computational complexity, it also contains an extensive bibliography and a well
documented catalog of over 300 NP-complete problems and some open problems in the NP class. 

6.4. A fundamental study of the notion of complexity, which covers both systems 
complexity and problem complexity, was performed by Lars LOfgren [LO I]. He classifies 
complexities into description complexities and interpretation complexities and shows that some 
of the familiar complexity measures fit into one of these two classes. In terms of the GSPS 
framework, this classification reflects the ordering of epistemological types of systems. Any search 
for a higher epistemological type is associated with the notion of description complexity. On the 
other hand, any problem whose aim is to determine a lower epistemological type involves the 
notion of interpretation complexity. 

EXERCISES 

6.1. Propose some intuitively reasonable measures of systems complexity for behavior systems, 
ST-systems, and structure systems, and check for each of them if the axioms (Cl)-(C5) 
formulated in Section 6.3 are satisfied. 

6.2. Consider some problems in your area of interest and check for each of them whether or not it 
is transcomputational. 

6.3. Calculate some entries in Table 6.1. 
6.4. Verify the mathematical expressions in the last column of Table 6.2. 
6.S. Extend Table 6.2 for time complexity functions n°, n!, and 2'l!'. 
6.6. Show that for any positive number N there exists a number no such that 

n! > N" 

for all n ~ no. 
6.7. Prove that each of the following propositions is either true or false: 

(a) 3n5 + 10n3 + n2 + 25 is of complexity 0(n5); 
(b) 2" + 3" is of complexity 0(2"); 
(c) 2" + 3" is of complexity 0(3"); 
(d) n! is of complexity O(n"); 
(e) n" is of complexity O(n!); 
(f) 103" is of complexity 0(22''). 
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GOAL-ORIENTED SYSTEMS 

All life is a purposeful struggle and your only choice is the choice of a goal. 
-AVN RAND 
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7.1. PRIMITIVE, BASIC, AND SUPPLEMENTARY CONCEPTS 

The only justificationfor our concepts is that they serve to represent the complex of 

our experiences; beyond this, they have no legitimacy. 
-ALBERT EINSTEIN 

To achieve a global comprehension of the whole GSPS conceptual framework, it is 
desirable to look at the framework from a distance, with the aim of recognizing some 
significant categories of the concepts. Such an inspection of the conceptual framework 
is likely to reveal three main categories of concepts. Let us refer to concepts in these 
categories as primitive, basic, and supplementary systems concepts. 

Primitive systems concepts are characterized by their independence from any other 
concepts in the framework. They represent thus a starting point in the development of a 
conceptual frameworks. Once selected, they basically determine the possible range of 
conceptual frameworks that can be built upon them. It is appropriate to say that the 
richness of the chosen primitive concepts determines the richness of the conceptual 
frameworks that are derivable from them. If any of the primitive concepts is excluded, 
the range of derivable conceptual frameworks may be considerably reduced or may 
even become pragmatically worthless. 

In the GSPS framework, primitive systems concepts are those associated with the 
source system: attributes (or input and output attributes), appearance sets, backdrops, 
backdrop sets, specific and general variables (or input and output variables) and their 
state sets, specific and general supports and their support sets, observation channels 
(crisp or fuzzy), and exemplification/abstraction channels. Also included are, of course, 
the various methodological distinctions associated with these concepts. 

All other concepts of the GSPS framework are defined in terms of the primitive 
concepts above. Upon careful inspection of these other, derived concepts, two 
categories emerge naturally. One of them consists of concepts that are connected with 
various forms by which constraints among variables are characterized. These are 
concepts involved in defining all the epistemological systems types except the source 
system, namely, data, translation rules in support sets, sampling variables (generated, 
generating, and input), masks, behavior and ST-functions (basic and generative), 
environment (external and internal), subsystems and supersystems, elements of 
structure systems, coupling variables, couplings (neutral or directed), elements of 
metasystems, and replacement procedures. Since these concepts are all connected with 

357 
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the basic issue of systems problem solving-the characterization, determination, and 
use of constraints among various kinds of entities-it is terminologically appropriate to 
call them basic systems concepts. 

Let us refer to the remaining GSPS concepts as supplementary systems concepts. 

These concepts are neither primitive nor basic GSPS concepts, but can be defined in 
terms of them and, in some cases, also in terms of other supplementary concepts. They 
usually have different meanings depending on the systems types to which they are 
applied. One such concept is systems complexity, which is discussed in Chapter 6. It is a 
general concept, defined by its general axioms, which subsumes a large spectrum of 
more specific notions of systems complexity. These can be ordered by their degrees of 
specificity. To be of any practical use in systems problem solving situations, the notion 
of systems complexity must be sufficiently specific at least to the extent that it is defined 
in terms of some specific systems type. 

Two important classes of concepts, which belong to the category of supplementary 
systems concepts, are those of the goal and the performance of a system. There are 
general concepts that, like the concept of systems complexity, subsume a variety of 
special cases. It is the purpose of this chapter to introduce these concepts at a general 
level, discuss some of their specific meanings, and outline their role in systems problem 
solving. 

7.2. GOAL AND PERFORMANCE 

There is nothing insignificant in the world. It all depends on how one looks at it. 
-JOHANN WOLFGANG GOETHE 

The concept of a goal of a system can be defined in many different ways. A general 
view is adopted for the GSPS according to which the goal of a system is "in the eyes of 
the user." That is, given a system of some epistemological type, identified by its primary 
traits, a goal associated with the system is a specific restriction of its primary or 
secondary traits, which the user considers desirable under given circumstances. 

A given system may thus be viewed from the standpoint of different goals. It 
satisfies each of them to some degree. This degree, which is called the performance of the 
system with respect to the goal, should measure (in some manner) the closeness between 
the actual and desirable manifestations of those traits of the system that are involved in 
the goal. It is often expressed in terms of an appropriate function, which is called a 
performance function. 

Let [!£ denote a set of systems that differ in those traits that are assigned, in a given 
situation, to the notion of a goal, and are equal in all other traits. Then, a performance 
function, say function w, has the form 

w: [!£ x [!£ -+ [0, 1], (7.1) 
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where w (x, x*) represents the degree to which a particular system x E ?£ approximates a 
specified goal system (desirable, ideal system) x* E ?£. The performance function can be 
conveniently expressed in terms of an appropriate distance function 

(7.2) 

by the formula 

* bm(x, y)-b(x, x*) 1 b(x,X*) 
w(x,x ) = = - , 

bm(X,y) bm(x,y) 
(7.3) 

where 

15m (x, y) = max<5 (x, y). 
X,YE :r 

Example 7.1. Assume that a goal is defined in terms of a desirable behavior 
functionfl within the set of behavior systems characterized by the same source system 
and mask M. Set ?£ is then represented in this example by a set of behavior systems 

that differ only in behavior functions fB' One possible way of expressing distance 
between systems in this set, and which seems appropriate in this case, is the city-block 
(Hamming) distance 

<5 (x,y) = L IXfB(C)-'fB(C)I. (7.4) 
CEC 

When the behavior functions are probabilistic, then 15m (x, y) = 2 and 

w (x, x*) = 1- b (x, x*)/2; (7.5) 

when they are possibilistic, then 15m (x, y*) = I C I and 

w(x,x*) = 1-b(x,x*)/IC/, (7.6) 

It is obvious that different goals and performance functions are applicable to 
different types of systems. However, different types of goals, each of which requires a 
special performance function, can be defined even for the same systems types. For 
behavior systems, for example, goals can be defined in terms of desirable behavior 
functions, ranges of behavior functions, sets of local behavior functions for specific 
subsets of the support set, sets of behavior functions representing desirable subsystems, 
etc. A special performance function is obviously needed for each of these types of goals. 

The concepts of goal and performance provide a basis for defining the notion of 
goal-oriented systems, to which the rest of this chapter is devoted, 



www.manaraa.com

360 CHAPTER 7: GOAL-ORIENTED SYSTEMS 

7.3. GOAL-ORIENTED SYSTEMS 

A system that tends to improve its performance while pursuing its task or goal and 
does so without outside help is called self-organizing. 

-HANS J. BREMERMANN 

Assume that a goal type and a relevant performance function are defined for a set 
of systems of some epistemological type. As explained in Section 7.2, with each system 
in the set is associated the value of the performance function, which indicates the degree 
to which the system satisfies the goal. This fact suggests a trivial way of defining goal
oriented systems: a system is viewed as goal-oriented if and only if its performance with 
respect to the given goal is greater that some specified threshold value (typically 0.5 or 
larger). 

Another way of defining goal-oriented systems, which seems operationally more 
meaningful, is to view the notion of goal-orientation in relative terms. That is, one 
system is viewed as goal-oriented with respect to another system of the same type and a 
specified goal if and only if it performs better (according to some performance function) 
with respect to the goal. Formally, given two systems x, y E f!l" of the same type, a specific 
goal x* E f!l", and a relevant performance function w, system x is goal-oriented with 
respect to system y and goal x*, and under performance function w, if and only if 

W (x, x*) > W (y, x*). 

Let the difference 

.1 W (x, y I x*) = W (x, x*) - W (y, x*) (7.7) 

be called the degree of goal-orientation of x with respect to y, given goal x*. 
A system that has a positive degree of goal-orientation with respect to another 

system must contain some traits, other than those included in the latter system or 
associated with the goal, that are responsible for its improved performance. Let us call 
these goal-seeking traits. Such traits are, for instance, some additional variables or states 
in generative systems, additional elements or couplings in structure systems, additional 
elements or replacement procedures in meta-systems, and the like. 

To illustrate these general notions associated with goal-orientation, let us apply 
them in the rest of this section to systems of a specific epistemological type-neutral 
behavior systems. In this case, the goal-seeking traits are such variables whose inclusion 
into the system improves its performance. Such variables are called goal-seeking 
variables. 

Consider a set of neutral behavior systems of the usual form 
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which differ only in their behavior functions/B' Since the rest of this section deals solely 
with this type of system, no confusion will be caused if we simplify the notation by 
excluding the subscripts B. In addition, we may conveniently identify each system in the 
set either by its behavior function / or the associated distribution f. 

Assume that the systems considered are probabilistic. Consistent with the notation 
introduced in Chapter 3, let c denote overall states of the sampling variables associated 
with mask M and let c E C. Assume that the system identified by the probability 
distribution 

f* = (f* (C)ICEC) 

is viewed as a goal. Then, for each system in the set, identified by the probability 
distribution 

f= (f(C)ICEC), 

its distance () (f, f*) from the goal can be expressed, for example, by formula (7.4). The 
performance w (f, f*) of each system in the considered set is then determined by 
substituting its distance into formula (7.5). 

Consider now a behavior system 

F' = (S', M', 1') 

whose source system S' contains all entities included in S, but contains in addition some 
variables through which mask M is extended into mask M'. Let states of sampling 
variables associated with the set difference M' - M be denoted by z, let Z E Z, and let 

f' = (f'(C,Z)ICEC, ZEZ) 

denote the probability distribution of system F'. 
To calculate the distance between systems identified by the distributions f' and f*, 

the extended distribution f' must be converted to a form comparable with f*. This can 
be done by means of the formula 

f" (c) = L f' (c, z). (7.8) 
ZEZ 

Let the distribution 
f" = (f"(c)lcEC) 

now be used to identify system F'. Formulas (7.4) and (7.5) are then applicable for 
calculating the distance () (f", f*) and performance w (f", f*), respectively. If 

L\W(f", flf*) > 0, 
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calculated by formula (7.7), the system F' is a goal-oriented system with respect to 
system F, given goal f*; variables associated with M' - M are then called goal-seeking 
variables. 

It is important to realize that a necessary condition for system F' to be goal
oriented with respect to system F is that f is not a projection of f'. Indeed, if f were a 
projection of f/, then f" = f and, consequently, 

Aw(f",flf*) = O. 

This condition means that variables of S' that are not contained in S must represent 
attributes that are not available on the object for which system F is defined. 

Example 7.2. Consider a computer system in which the utilization of three 
expensive units is of particular interest. Three variables VI' V2 , V3 are defined, one for 
each of these units, by which activities of the units are described in time. Each of the 
variables has two states: 0, which indicates that the unit is not active at the time of 
observation, and 1, which indicates that the unit is active. The goal is to keep all the 
units active all the time. 

Suppose that an extensive hardware monitoring of the variables is performed (see 
Example 3.8) and the probability distribution f specified in Table 7.1a is obtained for 
the memoryless mask. Also shown in Table 7.la is the probability distribution f* 
that represents the goal. Using formulas (7.4) and (7.5), we obtain b(f, f*) = 1.4 and 
w(f, f*) = 0.3. 

Assume now that a new unit, say a communication channel, is added to the 
computer system in such a manner that it affects the activities of the three units under 
consideration. Assume further that the new unit is relatively inexpensive, when 
compared with the other units, so that its own utilization is not important. The unit is 
introduced only for the purpose of enhancing the utilization of the other three units. 
The goal thus remains the same. 

TABLE 7.1 
Illustration of a Goal-Oriented System and a Goal-Seeking Variable (Example 7.2) 

(a) (b) (c) 
VI V2 V3 f f* VI V2 V3 V4 f' VI V 2 V3 f" 

0 0 1 0.15 0 0 1 1 1 0.10 0 1 1 0.10 
0 1 0 0.20 0 0 0 0 0.02 0 0 0.02 
1 0 0 0.10 0 0 1 0 0.03 0 1 0.03 

0 0.25 0 0 0 0.04 0 0.05 
0.30 0 1 0.01 0.80 

0 0.25 
0.55 
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Let variable V4 be defined for the new unit in the same way as the other variables 
are defined for their units. Assume that hardware monitoring is performed again for the 
new system, which includes variable v4 , and results in the probability distribution given 
in Table 5.1b. To make it comparable with f*, we use formula (7.8) to calculate 
distribution f" (Table 7.1c). Then, b (f", f*) = 0.4 and w (f", f*) = 0.8. Hence, 

Aw(f",flf*) = 0.8-0.3 = 0.5, 

i.e., the extended system is goal-oriented and variable V4 is a goal-seeking variable in this 
case; the degree of goal-orientation (improvement in performance due to the additional 
unit) is 0.5. 

Consider a different goal, in whichf* (c) = 0.5 for the last two states listed in Table 
7.1a. We obtain 

b (f, f*) = b (f", f*) = 0.9 
and 

w(f,f*) = w(f",f*) = 0.55. 

The new system is thus not goal-oriented in this case. Although the new unit, 
represented by variable v4 , influences activities of the other units considerably, it does 
not bring the system closer to the goal. That means that variable v 4 is not a goal-seeking 
variable with respect to this alternative goal. 

Consider still another goal, in whichf*(c) = 0.2 for each state listed in Table 7.1c. 
Then, 

w(f,f*) = 0.85, w(f",f*) = 0.4, 
and 

Aw(f",flf*) = -0.45. 

In this case, variable V4 is undesirable and may be called a goal-evading variable; it 
diverts the system from its goal and thus reduces its performance. 

7.4. STRUCTURE SYSTEMS AS PARADIGMS OF GOAL-ORIENTED 
BEHAVIOR SYSTEMS 

... a contemporary scientist does not try at all cost to construct a single global 

model of reality . ... He has learned over time that it may be preferable to construct 

a network of local models, perhaps of comparable complexity, but almost certainly 
of entirely different structure. 

-RICHARD BELLMAN AND CHARLENE PAUL SMITH 

Goal-oriented systems, as defined in the previous section, are characterized by the 
separation of goal-seeking variables from other variables involved, and by the 
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requirement that the goal-seeking variables positively contribute toward achieving the 
considered goal. An exploration of possible ways in which states of goal-seeking 
variables can be generated is obviously of considerable importance for comprehending 
the notion of goal-oriented systems and, particularly, for developing methods by which 
an appropriate goal-oriented system can be designed. Such an exploration leads 
necessarily to some specific types of structure systems. Each of them can be viewed as a 
paradigm that describes a principle (scheme, form) in terms of which states of goal
seeking variables are generated. Let these paradigms be called structure paradigms of 
goal-oriented systems. 

First, let us consider goal-oriented behavior systems of the neutral type. As 
explained in the previous section, their variables are partitioned into the goal-seeking 
variables and the remaining variables. Since the goal is defined in terms of the latter 
variables, it is reasonable to call them goal-implementing variables. 

The goal-seeking variables affect the goal-implementing variables, while, at the 
same time, they may be affected by them. It is thus natural to view the goal-oriented 
behavior system as a structure system with two elements. One of them generates states 
of the goal-implementing variables, while the other one generates states of the goal
seeking variables. Let these elements be called a goal-implementing element and a goal
seeking element, and let them be described formally as behavior systems 

and 

respectively. Since no confusion can arise, subscripts B are not used here. 
Assume that I V, 2 V are sets of variables in source systems IS, 2S, respectively. In 

general, 2V £; I V since the goal-seeking variables are required (by definition) to 
influence the goal-implementing variables, while the opposite influence is not required. 
To describe the manner in which the individual variables are generated, the two 
elements must be viewed as directed (as explained in Sections 4.3 and 4.4), even though 
no external environment is recognized. The directed couplings between the elements 
are 

~ 2 ~ I' C2 •1 = V and CI •2 = V, 

where lV' £; IV. It is reasonable to recognize three structure paradigms, which are 
distinguished from each other by the coupling C 1.2 : 

CI ,2 = 0; 
~ I 

C1.2 c V; 
~ I 
CI ,2 = V. 

These paradigms differ in the extent to which information about the goal-implementing 
variables is utilized for generating the goal-oriented variables. Let us call them an 



www.manaraa.com

SEC. 7.4: STRUCTURE SYSTEMS AS PARADIGMS OF GOAL-ORIENTED BEHAVIOR SYSTEMS 365 

Figure 7.1. Structure paradigms of a goal-oriented 
behavior system of the neutral type (without input 
variables). 

Information-less parad igm 

Partial-information parad igm 

Full-information paradigm 

lV 

information-less paradigm, a partial-information paradigm, and a full-information 
paradigm, respectively. Block diagrams of these three paradigms are illustrated in 
Figure 7.1. 

Let us now consider structure paradigms of goal-oriented behavior systems of the 
directed type. In addition to the sets of variables included in their neutral counterparts, 
they contain a set of input variables, say set X. Possible directed couplings between the 
goal-implementing element, goal-seeking element, and environment (identified as 
element 0) can be summarized by the matrix 

2 

X' 

o 
where X' ~ X and lV' ~ Iv. Three characteristic cases can be distinguished for X': 

X'=0; 

X'cX; 

X'=X. 
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Similarly, three cases can be distinguished for IV ': 

IV'C IV; 

IV,=Iv. 

Each of the cases for X' can be combined with any of those distinguished for I V'. This 
leads to nine paradigms. They are listed in Figure 7.2 and classified into four categories, 
each of which is represented by one of the block diagrams and given a name that is 
common in the literature. 

Label CO,2 C l ,2 Type 

o o Information-less 

Information-less parad igm 

2 X'cx 0 P.ntial input information 

3 X'=X 0 Full input information 

Feedforward paradigm 

4 0 ly'Cly Partial output information 

5 0 1 Y'= 1 Y Full output information 

6 x':::x lV'C1V Partial input/output 
information 

7 x'=X1V'clv Full input/partial 
output information 

8 X'C X IV'=IV Partial input/full output 
information 

9 X'=X IV'=IV Full input/output 
information 

Figure 7.2. Structure paradigms of a goal-oriented behavior system of the directed type. 
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The concept of a goal-oriented behavior system, in general, and its various 
structure paradigms summarized in Figures 7.1 and 7.2, in particular, enjoy a broad 
range of applicability under a large variety of interpretations. One of the interpre
tations, which has been studied quite extensively, is regulation. Any goal-oriented 
system that performs some sort of regulation is called a regulator. Its goal is to keep 
variables of 1 V in a particular state or a particular subset of states in spite of 
disturbances, which are represented by the input variables. The goal-seeking variables 
assume the role of regulating variables; elements 1 F, 2F are regulated and regulating 
elements, respectively. A regulator can also be defined in terms of a ST -system. The goal 
is then to keep the system in a subset of state transitions that involve the regulated 
variables. 

Another interpretation of the goal-oriented behavior system is to view it as a 
learning system. Elements 1 F and 2F are a learning element and teaching element, 
respectively. The goal is to produce responses (states of variables in lV) to individual 
stimuli (states of variables in X) that are considered (defined) as "correct." States of the 
goal-seeking variables represent in this case some sort of reinforcement. 

Still another interpretation is to view the goal-oriented behavior system as a 
decision-making system. Elements 1 F, 2F become decision-implementing and decision
making elements, respectively. States of input variables represent so-called "states of 
nature" (e.g., relevant external circumstances, possible moves of an opponent, 
recognized characteristics of some sort, and the like). States of the variables in 1 V 
represent outcomes, on which a utility function is defined. The goal of the system is to 
maximize the utility function. The role of the goal-seeking variables is to make 
selections from a set of decision alternatives that affect the outcomes in a positive way 
with respect to the goal. Given this role, they may be called, e.g., decision-making, 
selection-making, or utility-seeking variables. 

Some additional interpretations of the goal-oriented behavior system could be 
described, such as error-correcting systems or self-organizing systems. However, the 
purpose of this book is not to cover goal-oriented systems comprehensively and in 
detail, but only to indicate their role in systems problem solving. Some of the 
interpretations of goal-oriented systems (especially regulation and various kinds of 
decision making) are covered quite extensively in the literature. For more details, see the 
Notes to Chapter 7. 

7.5. DESIGN OF GOAL-ORIENTED SYSTEMS 

Every good regulator of a system must be a model of that system. 
-ROGER CONANT AND W. Ross ASHBY 

In systems inquiries, the notion of structure paradigms of goal-oriented behavior 
systems provides the investigator with a useful systems description, according to which 
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some of the investigated variables are viewed as contributing toward a desired goal. The 
basic problem is to determine which of the variables under investigation exhibit a high 
degree of this goal-seeking capability. 

In designing goal-oriented systems, on the other hand, each structure paradigm 
specifies a frame within which the designer is required to operate. In other words, each 
structure paradigm represents a set of assumptions (restrictions) regarding the system 
to be designed that the designer must not violate. 

Since designed systems are always directed, only the structure paradigms specified 
in Figure 7.2 are applicable for discussing the various issues involved in the design of 
goal-oriented systems. These paradigms can be partially ordered by the severity of their 
restrictions. The more severe is the restriction, the less freedom is left to the designer to 
perform his task and, consequently, the less general is the paradigm. Let a structure 
paradigm be called less general than another structure paradigm if and only if it 
contains more restrictions (assumptions) than the latter. When applied to the set of 
structure paradigms specified in Figure 7.2, this ordering by the degree of generality 
forms a lattice that is described by its Hasse diagram in Figure 7.3. For specific sets X 
and 1 V, a more refined lattice can be defined by allowing X' and 1 V' to represent any 
subsets of X and 1 V, respectively. 

In a typical problem of designing a goal-oriented system, the following particulars 
are given: 

i. a directed behavior system of = (OS, oM, Of) that represents the goal
implementing element without the goal-seeking variables; 

ii. a goal or a performance function that is compatible with the system of; 

Figure 7.3. Lattice of the structure paradigms 
specified in Figure 7.2 under the ordering by 
generality. 
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111. an inventory of available elements; 
IV. an objective criterion (function); 

369 

v. a structure paradigm of goal-oriented systems and, possibly, other constraints 
regarding the designed system. 

The following are the main issues involved in the design of goal-oriented 
systems: 

1. The goal and performance function must be made explicit. If only the goal is 
given in the problem statement, it is up to the designer to choose an appropriate 
performance function. If only the performance function is given, it is normally assumed 
that the goal is represented by a behavior function for which the performance function 
reaches its maximum. This may, of course, lead to several behavior functions. The 
designer must either select one of them as the goal or, alternatively, select more than one 

goal and view the designed system as a goal-oriented metasystem. 
2. A suitable set of goal-seeking variables must be selected. These variables cannot 

be arbitrary; they must exert some influence upon the output variables of the given 
system OF and produce thereby a nontrivial extension of system OF into a new behavior 
system 

This extended system represents the goal-implementing element of any of the structure 
paradigms of goal-oriented behavior systems. The selection of proper goal-seeking 
variables is crucial. Once selected, they determine the best performance that can be 
achieved under their influence. If this is not adequate, then other possible sets of goal
seeking variables must be explored. 

3. The main difficulty in selecting proper goal-seeking variables is that the 
influences of the various sets of variables under consideration upon the goal variables 
(behavior functions lf) are usually not known. These must therefore be determined as 
part of the design problem. Procedures described in Chapter 3 are relevant for dealing 
with this issue. 

4. Once a set of goal-seeking variables is accepted and the corresponding goal
implementing system 1 F is determined, the next step is to determine some particular 
way in which the goal-seeking variables are generated, i.e., to determine the goal
seeking system 2F. The objective is to determine a behavior function 2f of system 2F for 
which the performance function reaches its maximum within the constraints of the 
required structure paradigm. Various optimization methods can be employed for 
solving this problem. Their choice depends, primarily, on the methodological type of 
the systems involved as well as the nature of the performance function. 

5. A structure system that implements the goal-seeking behavior system 2F by the 
available element types must be designed. This is a standard problem of systems design 
which is discussed in Section 4.5. 
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7.6. ADAPTIVE SYSTEMS 

... all systems are adaptive, and the real question is what they are adaptive to and 

to what extent. 

-LOTFI A. ZADEH 

A goal-oriented system designed by the procedure outlined in the previous section 
is optimal (or close to optimal) only under the assumption that neither the behavior 
function if of the goal-implementing element nor the goalf* change. If this assumption 
is not satisfied, the actual increase in performance effected by the goal-seeking element 
may be far below the calculated increase. The goal-seeking element may even have an 
adverse effect on the goal-implementing element and cause a decrease in performance. 
In order to maintain a high level of performance, despite changes in if or f*, the goal
oriented system must be capable of adaptation. 

There are various reasons why lfandf* may change. In general, a change in if 
means that the goal-implementing system lfwas not properly conceptualized during 
the process of design to account for the change. This means, ultimately, that the goal
implementing variables are affected by some input variables that are not recognized in 
if Once a goal-oriented system is designed and implemented for a particular function if, 

changes in if are not under the control of the user. Changes in the goal, on the other 
hand, are fully determined by the user. In general, he may consider it desirable to change 
the goal because the circumstances for which the goal-oriented system was designed 
have changed. 

In order to enable a goal-oriented system to adapt to changes in the goal, its goal
seeking element must be designed for a set of alternative goals and supplemented with a 
special input variable whose states represent the goals. Let us call this kind of goal
oriented system, in which the adaptation is restricted to a specific set of goals, a 
multigoal-oriented system. A block diagram of its structure paradigm (of the general 
type) is shown in Figure 7.4, where v* denotes the variable that defines the current goal 
(v* E V*) and 2F+ denotes the goal-seeking system extended by the input variable v*. 
The goal is determined in this case either by the user or by another system to which the 
input variable v* is coupled. 

Changes in the goal may be determined by a goal-generating system that is 
included as an element in the multigoal-oriented system itself. This possibility is 
illustrated by the block diagram in Figure 7.5a. Elements 1 F and 2F+ form a basic 
multigoal-oriented system (as in Figure 7.4); element 3F is a goal-generating element. 
An overall goal is in this case replaced by sequences of subgoals, represented by states of 
variable v*. These sequences are determined by a behavior function 3f in terms of 
variables in sets X, 1 V, 2 V or, depending on the structure paradigm employed, some 
subsets of them. Let goal-oriented systems of this type be called autonomous multigoal

oriented systems. 
One obvious motivation for considering autonomous multi goal-oriented systems 
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is to simplify the overall optimization problem involved in the design of a goal-seeking 
element. The optimization problem is decomposed into several simpler optimization 
problems, each of which is demarcated by specific conditions expressed in terms of the 
variables involved. From this point of view, it is more appropriate to consider the 
system as an ordinary goal-oriented system with a two-level goal-seeking element, as 
illustrated in Figure 7.5b. 

Observe that both block diagrams in Figure 7.5 are the same as far as couplings 
between the three elements and environment are concerned. They differ solely in the 
way in which the elements are conceptually combined into larger elements. This subtle 
difference is an illustration of a basic phenomenon associated with systems of all kinds: 
the same system can be considered from different viewpoints when subjected to some 
operation of coarsening or refinement. 

Goal-oriented systems with a k-Ievel goal-seeking element (k > 2) can be defined 
recursively on the basis of the block diagram in Figure 7.5b. Any such system represents 
a hierarchical decomposition of the overall goal into subgoals, and consists of k levels of 
decomposition. 

Let us now consider goal-oriented systems that adapt to changes in the behavior 
function If The goal-seeking element of any such system must be able to perform the 
following two tasks: 

i. to process data associated with variables in the sets X, 1 V, 2 V and form a model 
of system 1 F; and 

11. to employ the model of I F for generating the goal-seeking variables in such a 
manner that their positive effect toward the goal reaches its maximum or, at 
least, is close to the maximum. 

Task (i) can be performed in many different ways. Methods discussed in Chapter 3 
are directly relevant for this purpose. However, it is more appropriate to view the goal-
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Figure 7.5. General structure paradigm of a goal-oriented system viewed as either (a) an 
autonomous multigoal-oriented system, or (b) a goal-oriented system with two-level goal
seeking element. 

implementing element and its model as a metasystem. Then, the goal-seeking element 
must be capable of identifying change in the sense discussed in Section 5.6. 

Example 7.3. To illustrate the notion of goal-oriented systems that are adaptive 
to changes in the goal-implementation system, a sophisticated adaptive system is 
described in this example. The object on which the system is defined is a computer 
equipped with a mechanism that allows it to move within a square area that is divided 
into smaller squares in chessboard fashion. This area is called the operating area of the 
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computer. Assume that 10 rows and 10 columns are distinguished in the operating area 
which are labeled by identifiers x and y, respectively (x, yEN 0.9)' Assume further that 
each square, which represents a particular location of the computer, is labelled by a 
single identifier 

1= 1Ox+y(lENo.99 )' 

The computer also has extensive error-correcting capabilities. During its execution of 
computing jobs, it is able to identify malfunctions in hardware, regardless of the kind of 
disturbances in the environment that caused them. It can also eliminate, within certain 
limits, the effect of malfunctions on the proper execution of the computing jobs. When 
the number of hardware malfunctions becomes too large, beyond the error-correcting 
capabilities of the computer, normal operation of the computer is threatened. It is thus 
desirable to counter the unknown disturbances by integrating the computer into an 
adaptive goal-oriented system whose goal is to minimize the number of hardware 
malfunctions in the long run. Since the computer can move, a natural way of countering 
external disturbances is to move selectively within the operating area according to some 
strategy designed to seek this goal. 

A general block diagram of the proposed goal-oriented system is shown III 

Figure 7.6. Two variables, which are observed in time, are involved at this level: 

m-goal-implementing variable, which represents the number of malfunctions that 
occurred in the computer during each defined period of time (m E No); 

c-goal-seeking variable, which specifies (controls) the location of the computer 
(cENo.99 )· 

" :: Disturbances 

II 

r-----!------
: Computer (object) : 

1.,..---
I Computing 
I jobs 
1-----
1 

1 ___ --1 

Figure 7.6. General block diagram of an adaptive goal-oriented system described III 

Example 7.3. 
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Since the nature of disturbances and their variability is not known, the goal
implementing element, in itself, can be viewed only as a source system S. It accepts at 
each time a state of variable c and generates a state of variable m. The manner in which m 
is generated is not known and may change. 

The goal-seeking element monitors variable m and generates the goal-seeking 
variable c, which controls the movement of the computer. It is viewed as a metasystem 

MF = (T, ff', r), 
where 

T is defined in terms of regular time intervals during each of which the computer does 
not move, and r specifies that each state 1 of variable c determines uniquely a particular 
behavior element IF of the metasystem. Elements IF of the metasystem MF are thus 
replaced according to the replacement of states of the goal-seeking variable c. 

A particular element IF of the metasystem MF is based on the mask specified in 
Figure 7.7. It defines the input variable m, output variable c, and six internal variables. 
Variable VI represents the total number of visits of the computer at location (square) I; 
variable ml specifies the mean number of identified hardware malfunctions in the 
computer based on all visits at location I, and the remaining variables specify the same 
mean number for the four adjacent squares of square I; variables c', v;, m; represent the 
next states of variables c, VI, ml respectively, and are the only generated variables. 

Variables m; and v; are generated in a deterministic manner by the formulas 

Generated 
var iabl es 

mQ· l Generat ing 
variables 

, vlml+m 
ml = l' vI + (7.9) 
v; = vI + 1; 

Figure 7.7. Masks 1M of the behavior systems 
IF(l EN 0.99) described in Example 7.3. 
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assume that m; is calculated to an accuracy of 0.01. Variable c' in system 'F can take 
states only from the set 

L = {/-I0, 1-1, I, 1+ 1,1+ lo}. 

It is generated probabilistically in such a way that probabilities of the individual states 
are indirectly proportional to the mean number of malfunctions at the corresponding 
locations. However, to make the system adaptive to unexpected changes in the spatial 
distribution of disturbances, all of the states must be assigned nonzero probabilities. 
Hence, if me (c E L) is too large so that lime < 0.01, then lime is set to (x, where (X > 0 is a 
chosen constant; assume, e.g., (X = 0.01. 

Behavior function 'f of system 'F is determined in the following way. First, we 
define 

for cEL-{/}, and 

Then, 

{ 11m; 
q, = 0.01 

if me ~ 0.01 
if me < 0.01 

if m; ~ 0.01 

if m; < 0.01 

where c' ELand k is a normalization constant calculated by the formula 

For locations at the boundary of the operating area, obvious adjustments must be made 
in calculating the probabilities. 

A block diagram indicating the main components involved in the goal-seeking 
metasystem MF is shown in Figure 7.S. Block 1 is a memory in which states of sampling 
variables of all behavior systems in F are stored. Its input I represents the replacement 
procedure: it reads from the memory states of those sampling variables that are 
pertinent to system 'F and guarantees that states of variables m; and v; are stored at a 
proper location in the memory. Block 2 represents Eqs. (7.9), which define the 
generation of variables m; and v;. Block 3 represents the determination of the auxiliary 
variables qc (CE L), in terms of which the probabilities 

are calculated in block 4. Block 5 is a random generator by which a state of variable 
c' (c' E L) is generated according to the probability distribution. Block 6 is a delay that 
represents the intervals of time during which the computer does not move. 

Before the described goal-oriented system is put into operation, its memory 
(block 1) may be filled with any information about the special distribution of 
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(j) 
MD 

m 

Figure 7.S. Block diagram of the goal-seeking element of the adaptive system described in 
Example 7.3. 

malfunctions that is available at that time. If no information is available, then states of 
all variables in the memory are set to zero. Once put into operation, the goal-oriented 
system controls the movements of the computer according to its model of the computer 
environment (operating area). The model is represented by the content of the memory 
of the goal-seeking meta system MF (block 1 in Figure 7.8). It is continuously updated 
by monitoring variables I and m. The system acts according to its anticipation of the 
effect of the environment on the proper operation of the computer. Systems of this kind, 
which are able to develop a model of their environment and use it in an anticipatory 
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manner, are the most sophisticated adaptive goal-oriented systems. They are usually 
referred to in the literature as anticipatory systems. 

Let us reflect now on the three aspects of the described adaptive system. First, the 
hardware malfunctions can be divided into three categories: 

i. the malfunctions that originate from within the computer hardware itself 
(hardware defects); 

ii. the malfunctions that are caused by disturbances distributed evenly within the 
operating area; 

iii. the malfunctions that are caused by local disturbances within the operating 
area. 

It is obvious that the goal-seeking variable (location in the operating area) can influence 
only malfunctions in category (iii). 

Second, it should be emphasized that the described system reacts to any event 
which endangers its normal activity (correct execution of requested computing jobs). It 
does not require that the nature of such events be predetermined: everything that 
threatens its ability to operate normally evokes a reaction tending to preserve this 
ability. It is thus reasonable to call the system a self-preserving system (i.e., a system that 
attempts to preserve its ability to operate normally). 

Third, the minimal value IX of qc (c E L), which is fixed for a particular system, has an 
important effect on the way in which the system adapts to changes in the environment. If 
IX is too small compared to the normal values of qc' as determined by the malfunctions in 
categories (ii) and (iii), the system is slow in recognizing changes in the environment. If IX 

is too large, the system is fast in recognizing changes, but its model of the environment is 
underutilized when the changes are substantially slower than the rate at which the 
computer can move. 

7.7. AUTOPOIETIC SYSTEMS 

An autopoietic system is organized (defined as a unity) as a network of processes of 
production (transformation and destruction) of components that produces the 
components that,' ( 1) through their interactions and transformations continuously 
regenerate and realize the network of processes (relations) that produced them; 
and (2) constitute it (the machine) as a concrete unity in the space in which they 
exist by specifying the topological domain of its realization as such a network. 

-FRANCISCO J. VARELA 

The aim of this section is to describe a GSPS formulation of a rather unorthodox 
class of goal-oriented systems that are usually referred to as autopoietic systems. The 
term "autopoiesis" is of Greek origin and literally means "self-production." However, 
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the self-production involved in autopoietic systems is not arbitrary, but must satisfy 
certain requirements. 

In general, autopoietic systems function within a finite and discrete space-time 
support set. The space is usually two dimension sal or three dimensional, but a k
dimensional space (k;::: 1, finite) can also be used. An overall characterization of 
autopoietic systems is that they form and maintain in time a spatially distinguished unit 
by a set of movement and production rules defined for entities of several different types 
distributed within the space. 

Autopoietic systems are thus goal oriented. The goal is some kind of a boundary, 
usually called a topological boundary, that allows the observer to recognize a part of the 
space as a unit. Some of the movement or production rules that are essential for 
achieving this goal in a particular autopoietic system may thus be viewed as goal-seeking 
traits of the system. 

The idea of autopoietic systems originated in biology, where it is exemplified by a 
great variety of instances. Some of the simplest biological objects whose formation and 
maintenance as spatial units can be well characterized in terms of autopoietic systems 
are biological cells, as well depicted by Milan Zeleny [ZE4]: 

We observe self-production phenomena intuitively in living systems. The cell, for 
example, is a complex production system, producing and synthesizing macromole
cules of proteins, lipids, and enzymes, among others; it consists of about 105 

macromolecules on the average. The entire macromolecular population of a given 
cell is renewed about 104 times during its lifetime. Throughout this staggering 
turnover of matter, the cell maintains its distinctiveness, cohesiveness, and relative 
autonomy. It produces myriads of components, yet it does not produce only 
something else-it produces itself. A cell maintains its identity and distinctiveness 
even though it incorporates at least 109 different constitutive molecules during its 
life span. This maintenance of unity and wholeness, while the components 
themselves are being continuously or periodically disassembled and rebuilt, created 
and decimated, produced and consumed, is called "autopoiesis." 

An autopoietic system is usually described in terms of components of certain types, 
which are often given such suggestive names as "substrates," "catalysts," "holes," 
"links," and the like. At every instant of the defined time set, each recognized location of 
the defined space is occupied by exactly one component of a particular type. The 
components undergo spatial transformations in time according to specific rules 
(movement and production rules). If these rules are chosen properly, the system is 
capable of forming and maintaining a topological boundary of some kind (its goal) and 
may be thus considered as an autopoietic system. 

One way of describing autopoietic systems in the GSPS language is to view them as 
metasystems of the form 

MD = (T, q;, r). 
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Set §l) in a particular autopoietic system consists of all data systems that are definable in 
terms of a specific space (as a support) and a single variable whose states represent 
components of the autopoietic system. Thus, for example, states 0, 1, 2, 3, etc., may 
represent holes, catalysts, substrates, links, etc., respectively. Support set T of the 
metasystem is the time set of the autopoietic system; it is totally ordered and its elements 
represent appropriate time intervals. The replacement procedure consists of all the 
movement and production rules of the autopoietic system. A replacement of one data 
system by another occurs always when one time in T is replaced by the next one. 

Example 7.4. Let us describe a simple autopoietic system as an example of a 
metasystem. It consists of 

• a time set T, which may conveniently be represented by the set of non-negative 
integers; 

• a set D of data systems based on the same image system whose support is a two
dimensional space defined by two Cartesian coordinates x, YEN o. 9 and which 
contains a single variable with five states, which are given the following 
suggestive names: 
~hole, 

l-catalyst, 
2-substrate, 
3--link, 
4-bonded link. 

• a replacement procedure r that is defined by the following rules (see Note 7.5): 
1. Two neighboring substrates either of which is in the neighborhood of a 

catalyst are joined to form a link. 
2. Neighboring links are joined to form bonded links. (A closed bonded link 

constitutes a boundary the maintenance of which is the goal of the 
autopoietic metasystem.) 

3. Randomly selected links, whether free or bonded, disintegrate, yielding two 
substrates or two links, respectively. (The resulting components may later 
rebond.) 

4. Substrates may move into any neighboring empty space, passing through a 
single chain of bonded links if necessary. Links may move into empty spaces 
and may also displace substrates, either pushing them into adjacent holes or 
trading positions with them. Catalysts have all the freedom of movement of 
links, and may displace them. However, unlike substrates, neither links nor 
catalysts may pass through bonded-link segments. Bonded links do not 
move. 

Each time instant thus defines a distinct data system DE §l). The individual data 
systems are replaced in time by applying the rules of the replacement procedure. The 
procedure begins with an initial condition (data system) in which each location contains 
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Figure 7.9 Illustration to Example 7.4 
(autopoietic system). 
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either a substrate or a catalyst. The first seven time instants from one series of 
applications ofr are given in Figure 7.9. The goal of this system is to form a closed space 
defined by bonded links (topological boundary). We can see in Figure 7.9 that the 
system is indeed goal oriented. The topological boundary begins to emerge at t = 2 and 
is completed at t = 6. 

NOTES 

7.1. The goal-oriented systems that have been studied most thoroughly are regulators. 

General principles of regulation are primarily due to Ross Ashby and Roger Conant [AS1, 2, 
C02, 3, C09]. Ashby's law of requisite variety is of particular significance [AS2, 3, P04].1t states 
that the capacity of any physical device as a regulator cannot exceed its capacity as a channel of 
communication. It follows from this law that the variety in the regulating variables can be reduced 
to a desirable level (which is the goal of the regulator) only by an increase in the variety of the 
regulating variables to at least the appropriate minimum. The law is often paraphrased by the 
simple assertion: "only variety can destroy variety." 

Hierarchically organized multilevel regulators were investigated by Aulin-Ahmavaara 
[AUl-2]. His results are expressed in its most general form by the following statement: 'The 
weaker in average are the regulatory abilities and the larger the uncertainties of available 
regulators, the more hierarchy is needed in the organization of regulation and control to attain the 
same result of regulation, if possible at all." This statement is usually called the law of requisite 

hierarchy. It follows from this law that the lack of regulatory capability can be compensated for, 
to some degree, by conceptualizing the regulator as a hierarchical multigoal structure system. 

In addition to these general principles of regulation, many results regarding regulation have 
been published under the label "control theory" [DIl, HS1, SAl, 2]. These are primarily results 
regarding feedback regulators and devoted to special classes of systems (continuous, linear). 

7.2. An excellent survey of the various meanings given to the term "adaptive system" is in a 
paper by Brian Gaines [GAl]. For further study of adaptive systems, three books are 
recommended, written by Bellman [BE3], Holland [HOI], and Tsypkin [TS1]. Anticipatory 
systems are thoroughly covered in a large monograph by Robert Rosen [R08]. 

7.3. The idea of autopoietic systems was proposed by three Chilean biologists, Humberto 
Maturana, Francisco Varela, and Ricardo Uribe in the early 1970s. Its first exposition in English 
was published in 1974 [V A5]. For further study of autopoietic systems, a book carefully edited by 
Milan Zeleny is recommended [ZE4J, where the reader can find additional bibliographical 
information. 

7.4. The self-preserving anticipatory system described in Example 7.3 was proposed by 
Antonin Svoboda in 1960 [SV3]. The idea is further developed, primarily through computer 
simulation, by several contributors; a summary can be found in Ref. [WI2]. 

7.5. The autopoietic system described in Example 7.4 is adopted from the original paper by 
Maturana, Varela, and Uribe (Note 7.3). For a more specific formulation of the replacement 
procedure, the reader is advised to consult this paper. 
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7.6. The literature on self-organizing systems is quite extensive. A survey of this subject area 
can be found in one of my papers [KL6]. Decision making viewed as a goal-oriented system is 
well discussed in Ref. [WH3]. 

EXERCISES 

7.1. Consider a behavior system in some area of interest and describe it as a goal-oriented system, 
i.e., define a goal and a performance function, and identify possible goal-seeking variables. 

7.2. Repeat example 7.2 for different goals and different performance functions. 
7.3. Compare advantages and disadvantages of the feedback and feedforward structure 

paradigms of goal-oriented systems (Figure 7.2). Under which conditions is either of them 
preferable? 

7.4. Simulate the anticipatory self-preserving system described in Example 7.3 on a computer 
and generate some scenarios. 

7.5. Simulate the autopoietic system described in Example 7.4 on a computer and operate it for 
different initial data systems (consult also Refs. [V A5] and [ZE4]). 
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SYSTEMS SIMILARITY 

Who has taught us the true analogies, the profound analogies which the eyes do not 
see, but which reason can divine? It is the mathematical mind, which scorns content 
and clings to pure form. 

-HENRI POINCARE 
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If the parts composing an individual become greater or less, but in such proportion 
that they will preserve the same mutual relations of motion and rest, the individual 
will still preserve its original nature, and its actuality will not be changed. 

-BENEDICT DE SPINOZA 

In a common dictionary, the term similarity is typically defined as a quality of "having 
characteristics in common" or being "alike in substance or essentials" (Webster's Third 
New International Dictionary). According to this definition, two entities are considered 
similar if they are equal or, at least, comparable in some of their properties, but not 
necessarily in all of them. In addition, it is assumed that the properties in which the two 
entities are equal have some significance in a given context. Different kinds of 
similarities can thus be defined for a set of entities, depending upon the properties that 
are considered significant for a particular purpose. 

Geometric similarity seems to be the first kind of similarity that was formulated and 
developed in a rigorous manner. It was defined by Euclid (third century B.c., in Volume 
VI of his Elements) as follows: "Those straight-sided geometric figures are called similar 
which have equal angles, and whose sides subtending equal angles are proportional." 
According to this definition, the two geometric figures shown in Figure 8.1 are similar 
because 

1. their angles are equal, i.e., 

0:' = 0:, P' = p, y' = y, b' = b; and 

ii. their sides subtending equal angles are proportional, i.e., 

a' = ka, b' = kb, ... , e' = ke, 

where k is a constant of proportionality. One figure is thus obtained from the other one 
by a simple linear transformation, which enlarges or reduces the latter, but does not 
distort it. Such a transformation is usually called a distortionless linear transformation. 

The notion of geometric similarity of planar figures can be considerably 
generalized by allowing their angles to be subject to linear transformation as well. This 

385 
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Figure 8.1. Simple geometric similarity based on a 
group of distortionless linear transformations. 

can be expressed conveniently by representing planar figures by sets of points in a two
dimensional Cartesian space with coordinates x and y. A generalized geometric 
similarity of planar figures, based on a general linear transformation of the coordinates, 
is then represented by equations 

x' = kl.xx + k2 .xY + k3 ,x, 

y' = kl. yx+k2,yy+k3 ,y, 
(8.1) 

where the subscripted k's are constant coefficients; these coefficients must be such that 
Eqs. (8.1) have a unique solution for x and y, given x' andy'. Transformation (8.1), which 
can be extended to three-dimensional Cartesian space in an obvious way, is usually 
called a general affine transformation. It includes various special cases of transformations 
(and similarities), such as the distortion less transformation, symmetric reflection, one
dimensional enlargement or reduction, rotation, and the like. 

Example 8.1 Consider a discrete Cartesian space N~, 7' Several planar figures that 
are all similar under the general affine transformation are shown in Figure 8.2. They 
represent various characteristic special cases: (a) the identity transformation (original 
figure); (b) symmetric reflection with respect to y and shift; (c) rotation and shift; 
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Figure 8.2. Examples of planar figures that are similar under the group of general affine 
transformations. 

(d) enlargement along y; (e) enlargement and shift (geometric similarity); (f) a general 
type. An example of equations of form (8.1) that are not acceptable as an affine 
transformation are equations 

x' = x+ y, 

y' = x+ y. 

Indeed, these equations do not provide a unique solution for x, y: any solution in which 
x' = y' is acceptable independently of x, y. 

The geometric tranformation (equal proportionality of all dimensions) preserves 
geometric objects completely except for their enlargement or reduction. It is thus 
reasonable to say that it defines a strong similarity on a set of geometric objects such as 
planar figures or solid bodies. The general affine transformation preserves geometric 
objects only approximately since it allows them to undergo a wide range of distortions; 
it may thus be said to define a weak similarity of geometric objects. The distortions 
permitted in the general affine transformation can be restricted in various ways. For 
example, we may require that all the coefficients in Eqs. (8.1) be equal to zero except kl. x 

and k 2 •y • This type of transformation generalizes the notion of geometric similarity by 
allowing different constants of proportionality for different dimensions, but represents 
a less general kind of similarity than does the general affine transformation. 
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For purposes of replacing one element of a set with another element, similarity 
among these elements must be viewed as an equivalence relation defined on the set. As 
such, it can be expressed as a partition of the set, afunction defined on it, or a group of 
transformations (one-to-one and onto functions) of the set to itself (automorphisms). In 
the case of geometric (distortion less) similarity, for instance, the set of all equilateral 
triangles, all squares, all circles, or all oblongs whose corresponding sides stand in a 
particular ratio are examples of equivalence classes of planar figures and, at the same 
time, blocks of the partition based on this kind of similarity. On the other hand, each 
particular constant of proportionality represents one element of the group of 
transformations that characterizes the similarity. 

Although it is not necessary, it is usually by means of a group of transformations 
that an intuitive idea of similarity on a given set of entities is first formalized. Once this 
group is defined, an attempt is usually made to determine an operationally useful set 
whose elements represent the individual equivalence classes (particular blocks) of the 
equivalence relation imposed upon the set by the group of transformations. Such a set is 
usually called a set of invariants of the group. The equivalence relation can be then 
represented by an appropriate function from the set of entities on which the similarity is 
defined onto the set of invariants. 

Consider, for example, the set of all structure systems that can be defined for a 
particular set of variables in the sense discussed in Section 4.7. The group of 
permutations of the variables imposes an equivalence relation on the set. An example of 
a set of invariants of this group is the set of all unlabeled block diagrams that have the 
same number of entries as the number of variables under consideration. 

Different kinds of similarity defined on the same set can be partially ordered by 
their degrees of generality. Let one kind of similarity be a generalization of another kind 
if and only if the set partition corresponding to the former is a coarsening of the 
partition corresponding to the latter. For example, the geometric similarity that 
involves different constants of proportionality is less general than the similarity based 
on the group of general affine transformations; at the same time, it is more general than 
the geometric similarity based on the group of distortion less transformations. 

If one entity is viewed as similar to another entity, then each preserves some 
properties of the latter under some transformation. In fact, the properties that for a 
given purpose it is desirable to preserve usually form the intuitive basis for defining an 
appropriate group of transformations. For example, if we want to preserve the weight of 
geometrically similar bodies made of different materials, the constant of proportionality 
c must satisfy the equation 

where w, w' are weights per unit volume of the materials of any two bodies that qualify as 
similar. 
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8.2. SIMILARITY AND MODELS OF SYSTEMS 

... there is no invariable one-way relationship between the model and the modelled, 

the symbol and the symbolized; each can be either . ... Nor is there a need for any 
model to be literally like the thing modelled. 

-G. SPENCER BROWN 

389 

When a similarity relation is defined on a set of systems, it is usually referred to as a 
modelling relation. Two systems are similar if they preserve some common traits and can 
be converted to each other by appropriate transformations applied to other traits. 

In systems problem solving, it is often an advantage (sometimes even a necessity) to 
deal with a problem in terms of a substitute system of some sort rather than the actual 
system for which the problem is formulated. The use of a suitable substitute system may 
be, for example, cheaper, faster, less dangerous, more convenient, easier to understand 
or control, more precise, less controversial, or better adjusted to the human scale. The 
two systems-the actual system and its substitute-must be similar in an appropriate 
and sufficiently strong sense with respect to the problem of concern. 

Consider two systems, say x and y, that are similar under a set of transformations 
applied to some of their traits. Assume that x is the system under investigation and y is a 
desirable substitute. Then, x is called the original system (or just the original), y is called 
a modelling system, and y together with the relevant transformations is called a model of 
x. Since the similarity relation is symmetric (as any equivalence relation), we can just as 
well view system, y as the original system. Which of the two systems is viewed as the 
original system depends on the circumstances. Whether or not the other system is 
suitable as a model of the original system is decided solely on pragmatic grounds. It is a 
decision made by the user. He is likely to accept the model as a substitute for the original 
if, in his opinion, it has clear advantages over the original and, at the same time, it is not 
worse than any of the available competing models. 

The term "model" is thus used in this book in connection with a particular 
relationship of one system to another system. It indicates that the two systems are 
similar in some sense and that one of them can replace the other one, under a suitable 
transformation, for some purpose. A modelling system attains its meaning as a model 
only if it is supplemented with a transformation that connects it in a desirable way with 
an original. In other words, each model requires an original. There may, of course, be 
different models of the same original. 

In addition to this specific meaning of the term "model", which conforms well to 
our common-sense understanding of it and is almost universally accepted, the term is 
used in the literature to express several other concepts. The fact that the term has 
become so highly overworked, and liable to careless misuse, is unfortunate. The term 
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enjoys at least three different meanings within the context of systems problem solving, 
in addition to the one reserved for it in this book. 

First, the term "model" is frequently used for all entities that in this book are called 
systems, while the term "system" is used for our concept of an object. According to this 
terminology, a system is thus a part of the world that is a subject of some investigation 
and any representation (image) of it is viewed as its model. As a terminological 
consequence, the process of systems inquiry is referred to as systems modelling. In our 
terminology, all systems are viewed as abstractions, some of which are descriptions 
(images) of real-world phenomena, and we reserve the term "modelling" for a similarity 
relationship between systems. 

The second meaning of the term "model" is used for a set of assumptions within 
which a problem is solved. Such assumptions are, for example, axioms of a 
mathematical theory that is employed for solving problems of some type. In our 
terminology, the term "paradigm" is used for this purpose. 

The term "model" is also used in the literature for a system that is a simplified 
version of another system. Since the relationship of simplification is antisymmetric 
while the relationship of similarity is symmetric it is certainly desirable to distinguish 
these two concepts terminologically. 

If we distinguish purely abstract systems, which have no physical interpretation (no 
observation channel), from interpreted systems (let us call them physical systems), we 
obtain four categories of modelling relationships, depending on the nature of the 
original system and modelling system: 

Original system Modelling system Category 

Physical Abstract I 
Abstract Physical II 
Physical Physical III 
Abstract Abstract IV 

Category I consists of mathematical models of all kinds. These models are based on 
accepted physical and other laws of nature. They make it possible to answer questions 
regarding physical systems by mathematical reasoning (symbol manipulation or 
numerical calculation) rather than by experimentation with their physical originals. For 
example, they allow to answer questions concerning artificial physical systems before 
they are actually implemented. In general, models in this category allow one to perform 
gedanken experiments (thought experiments) on mathematical models of hypothetical 
physical originals. An example: magnitudes of electric currents and voltages in a 
hypothetical electric circuits are calculated by solving appropriate algebraic or 
differential equations rather than by implementing the actual circuit and making 
relevant measurements on it. 

Category II is best exemplified by computers of all kinds, whether analog, discrete, 
or hybrid. Also included are various special physical systems, each of which is designed 
as a universal model for mathematical systems of some particular class. Examples are 
linear analyzers (to deal with linear algebraic equations), polynomial analyzers (to deal 
with polynomial functions), or electrolytic tanks (to deal with partial differential 
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equations). The use of models in this category consists in manipulating some variables 
of suitable physical systems and making measurements of other of their variables that 
represent solutions of some specific mathematical equations or answers to other 
mathematical questions. 

Category III has an important role in engineering. The easiest to comprehend are 
scale models, which are systems that are simply enlarged or reduced at a certain scale 
with respect to the original. They are used, for instance, for investigating the dynamic 
properties of new designs of airplanes, helicopters, or rockets in wind tunnels, for testing 
new types of ships in special water tanks, for assessing various dam, bridge, and many 
other kinds of construction projects. Even though these cases are characterized by 
simple geometric similarity, results obtained for a scaled system must be subjected to 
appropriate transformations to be meaningful for its original. Indeed, when reducing 
(or enlarging) the linear dimensions of the original at a ratio of, say c, the areas (e.g., the 
area of the transverse or longitudial cross section of an aircraft wing) are reduced (or 
enlarged) at the ratio of c2, and the volumes at the ratio of c3• Problems associated with 
formulating proper transformations for models of this sort and their various 
generalizations are treated by the theory of similarity or similitude. Other examples of 
models in this category include computers simulated on other computers, aircraft 
simulators for training pilots, and medical simulators such as an artificial heart or 
artificial kidneys. 

Category IV consists of models that are of great importance to applied 
mathematics. They are associated with various kinds of mathematical transformations 
(such as Laplace or Fourier transformations) with the aid of which mathematical 
systems of one kind (e.g., differential equations) are modeled by other mathematical 
systems (e.g., algebraic equations). Instead of dealing with the original, we can use a 
modelling system, which is usually considerably simpler, and apply the results obtained 
back to the original. In some cases (e.g., the Laplace transformation), detailed 
vocabularies have been compiled which specify the correspondence between the 
originals and the modelling systems. 

A general introduction to the modelling relationship between systems has been 
given; the rest of this chapter is devoted to the formulation of basic types of models 
within the GSPS conceptual framework. 

8.3. MODELS OF SOURCE SYSTEMS 

Both the poet's metaphors and the scientist's abstractions discuss something in 

terms of something else. And the course of analogical extension is determined by the 

particular kind of interest uppermost at the time. 

-KENNETH BURKE 

Source systems are primitive in the sense that they contain no information about 
the relationship (constraint) among their variables. Given two neutral source systems, 
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say Sand S', the only meaningful basis on which their similarity can be defined is to 
require that the properties recognized in each individual state set and support set 
(ordering, distance, etc.) be preserved under a transformation represented by one-to-one 
correspondences between 

i. sets of variables of the two systems; 
ii. sets of supports of the two systems; 

iii. state sets of variables assigned by (i); 
iv. support sets of supports assigned by (ii). 

This basically means that systems Sand S' are isomorphic in their general image 
systems, while they may be totally different in their semantic aspects (exemplification 
and observation channels) . 

• Formally, two neutral source systems 

where 

S = (0, i, I, (!), $), 

S' = (0', i', 1', e;', $'), 

1= ({Vi' V;)liENn }, {(Wj, Wi)UENm }), 

I' = ({v;, V;)liENn }, {(wj, Wj)ljENm }), 

are similar if and only if 

i. Vi corresponds to Vp(i) (iENn ), where p denotes a permutation of N n , i.e., p: 

Nn ..... N n; 
ii. Wj corresponds to Wq(j) UENm ), where q denotes a permutation of N m , i.e., q: 

Nm ..... Nm; 
iii. for each i E N n' Vi ..... Vp(i) is a one-to-one correspondence under which all 

properties recognized in V; are preserved in VP(i); 
iv. for each j E N j , Wi ..... Wq(j) is a one-to-one correspondence under which all 

properties recognized in nJ are preserved in Wq( j). • 

If neutral source systems S, S' are similar in the sense that their image systems are 
isomorphic, then either of them can be viewed as the original system and the other as the 
modelling system. The modelling system together with the transformation expressed by 
the one-to-one correspondences (i)-(iv) is then viewed as a model of the other system, 
the original. It must be emphasized, however, that the modelling relationship at the level 
of source systems is of little practical use since it does not imply any similarity between 
the original and modelling system as far as the ways in which their variables are 
constrained. It has a pragmatic significance only when the source systems under 
consideration are components of some epistemologically higher types of systems. The 
notion of similarity is in such cases sharpened by additional requirements. Similarity of 
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source systems may for some purposes be required as a necessary condition for a 
similarity of epistemologically higher types of systems, in which they are included, but it 
is never a sufficient condition for such similarity. 

Example 8.2. Transpositions in music from one key to another are examples of 
similarities in source systems. Consider, for instance, the source system S defined in 
Example 2.6 (Figure 2.8b) and another source system, say S', in which each note of VI is 
replaced with the note one tone lower, each chord in V3 is replaced with an equivalent 
chord one tone lower, and everything else is exactly the same as in system S. Assume 
further that the variables representing pitch, rhythm, and harmony in one of the systems 
are assigned to the variables representing the same attributes in the other system and 
that all one-to-one correspondences between the respective state sets and support sets 
are identity mappings. Then, system S ad S' can be viewed as similar under the identity 
transformation of their image systems. Given any musical score that can be described 
within S, the identity transformation transposes it into a similar score described in terms 
of S'. These correspondences are meaningful for the source systems since the musical 
scores are their secondary traits. If, however, S is a part of some data system D and S' is a 
part of another data system D', then the similarity between Sand S' is not sufficient for a 
meaningful similarity between the data systems D, D'. Indeed, data d, d' of systems D, 
D', respectively, may be any scores describable in the respective source system with no 
recognizable similarity at all. 

Consider now two directed source systems, say Sand S', as an original system and a 
modelling system, respectively. Since each variable of these systems is declared as an 
input variable or an output variable, its source of control (either the system itself or its 
environment) is uniquely determined. As a consequence, the one-to-one correspon
dences between the sets of variables and state sets ofS and S', which are required for a 
similarity between neutral source systems, can be replaced by input and output 
mappings (not necessarily one-to-one) such that it is guaranteed that each variable is 
controlled from one source only. This condition of control uniqueness (similar to the 
one required for structure systems, as discussed in Chapter 4) implies that the input 
mappings between sets of variables are oriented from S' to S and the output mappings 
between sets of variables are oriented from S to S'. Mappings between the state sets are 
oriented exactly the other way around. 

Since the mappings between elements ofS and S' are not required to be one-to-one, 
the modelling relationship between directed source systems is not symmetric; it is a 
quasiordering (reflexive and transitive relation) defined on any set of directed source 
systems. This means that the capability ofS' to serve as a modelling system ofS does not 
imply that S can serve as a modelling system of S' as well. This means, in turn, that 
instead of being isomorphic, the image systems ofS and S' are connected to one another 
by two homomorphic relations, one associated with input variables and the other with 
output variables, and an isomorphic relation between their supports. S is a homomor
phic image of S' with respect to input variables, while S' is a homomorphic image of S 
with respect to output variables; they are isomorphic with respect to their supports. 



www.manaraa.com

394 CHAPTER 8: SYSTEMS SIMILARITY 

.. Formally, a directed source system 

.,. 
S' = (0', I, I', 0', £') 

is a modelling system of another directed source system 

S = (0 I,i, 0, E), 
where 

1= ({ (Vi' V;) I iEN.}, u, {(wj, Wj)jj E Nm }), 

I' = ({ (v~, V~)lkEN." u', {(wj, Wj)/jENm }), 

if and only if 

i. for all kEN., such that u'(k) = 0, variable v~ represents variable Vpo(k), where 

is a function defined on the sets 

Xo = {iliEN., u(i) = O} 
and 

Yo = {klkEN."u'(k) = O} 

of input variables of Sand S', respectively; 
11. for each kEN." mapping vPo(k)~ Vk is homomorphic with respect to the 

recognized properties in vpo(k); 

iii. for all i EN. such that u (i) = 1, variable Vi represents variable vpo(i)' where 
PI: XI ~ 1';. 

is a function defined on the sets 

XI = {iliEN., u(i) = 1} 
and 

1';. = {klkEN., u'(k) = 1} 

of output variables of Sand S' respectively; 
iv. for each i EN., mapping Vp , (i) ~ Vi is homomorphic with regard to properties 

recognized in ~;; 

v. Wj corresponds to w~lj) (j E N m), where q denotes a permutation of N m; 
VI. for eachjENm,the one-to-one correspondence Wj ~ W ~ljl is isomorphic with 

respect to properties recognized in »j. 
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System S', together with the mappings (i)-(vi) is a model of S.Let the pairs of 
mappings be given the following names: 

input mappings: (i), (ii); 
output mappings: (iii), (iv); 
support mappings: (v), (vi). 

Some examples of these mappings are discussed in the context of models of directed 
systems of higher epistemological types. .... 

8.4. MODELS OF DATA SYSTEMS 

The essence of modelling lies in establishing relations between pairs of systems. 

-BERNARD P. ZEIGLER 

It is easy to extend the notion of models of source systems to models of data 
systems. Consider two neutral data systems 

D = (S, d), 

D' = (S', d '), 

and let D be viewed as an original system. Then, D' qualifies as a modelling system ofD 
if: 

i. there exists a transformation (a set of one-to-one correspondences) between S 
and S' under which S' becomes a modelling system of S (Section 8.3); and 

ii. d is preserved in D' under the modeling relationship between Sand S'. 

A model of data systems is thus a model of its source system that, in addition, 
preserves its data. In other words, ifD, D' are an original data system and a modelling 
data system, then they are isomorphic (under appropriate one-to-one correspondences) 
in their image systems and with respect to data. 

Example 8.3. Consider a melody whose score is given in Figure 8.3a. As in 
Example 2.6 (Figure 2.8), let the melody be described as a data system D'. Assume that 
the time set and variable representing the rhythm, say variable V'l , are defined exactly as 
in Example 2.6. Assume further that variable v~ represents the pitch as defined in 
Figure 8.3b. Let D denote the data system defined in Example 2.6 without variable V3 

(harmony). Then, it can be easily verified that D' is a modeling system of D (and 
vice versa) under the following one-to-one correspondences: 

i. vi corresponds to V2 and v~ corresponds to Vl; 

ii. time t' corresponds to time t; 
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.~ . 

(a) 

fftt tt ftf tt tt ttt tttt 
1o, 1,2,3, 4,5, 6,7,8, 9,10, 11,12, 13,14,15, 16,17, 18,19} V2' 

(b) 

Figure 8.3. Illustration of a modelling data system (Example 8.3). 

Ill. V'I +-> V2 is an identity mapping and V ~ +-> VI is defined by the equations 

, {19-VI+l 
V2 = o 

for VI =1= 0 
for VI = 0 

IV. T' +-> T is an identity mapping between the two time sets. 

In musical terminology, the relationship between the two melodies would be 
described as an inversion combined with a transposition. The melody of D' is obtained 
from the one ofD by inverting it and transposing the result by one full tone down and, 
similarly, the melody ofD is obtained from the one represented by D' by inverting it and 
transposing the results by one full tone up. 

For some purposes, it may be sufficient to define models of data systems in a looser 
sense by withdrawing the requirement of a modelling relationship between Sand S'. In 
such cases, the modeling relationship between D and D' is expressed in terms of one-to
one correspondences V +-> V' and W +-> W' between sets of overall states and overall 



www.manaraa.com

x= o 

y= 0 

2 

3 

(b) 

II, V, v, 

B W B 
W B W 

W G w 
G w G 

Figure 8.4. 

SEC. 8.4: MODELS OF DATA SYSTEMS 

2 

(a) 

1= 

v' l ,t= 

1"2,1= 

v. v. ". ", 

C C W B 

C G B W 

B B C W 

B B W G 

(d) 

3 

0 2 3 

0 0 

0 0 

---------1 period 

(c) 

v. v' , 

W 0 

B 0 

C 
W 

Illustration of a global data modelling (Example 8.4). 

397 

4 

v' , 

0 
1 
1 

0 



www.manaraa.com

398 CHAPTER 8: SYSTEMS SIMILARITY 

support instances of the two data systems, respectively, under which the data are 
preserved. 

It should be emphasized that the applicability of models of this sort is somewhat 
restricted since they do not involve specific relationships between individual variables 
and supports of the two systems. To characterize their global relationship, let these 
models be called global data models. 

Example 8.4. Consider the mosaic shown in Figure 8.4a. It can be described as a 
data system D with the following components: 

• a support that consists of a two-dimensional space x, Y (x E N 0,4' YEN 0,3) 

represented by a rectangular area divided regularly into 20 squares in the 
chessboard fashion as indicated in Figure 8.4a; 

• eight variables Vi (i E N 8)' each of which describes the color in a particular 
subarea of each square as specified in Figure 8.4b; 

• state sets of all the variables are equal and consist of three colors: black-B, 
white-Wand grey-G; 

• data d, which represent formally the mosaic: a 4 x 5 data matrix whose entries 
are 8-tuples of symbols B, W, G that represent color combinations in the 
individual squares of the support set. 

Consider another data system, say D', which consists of two-state variables Vi' V2 

observed in time t. Its data d' are periodic and one period is shown in Figure 8.4c. The 
reader can easily verify that data d are preserved in data d' under the transformation 

t = x+5y (t :::;; 19) 

between the support sets and the transformation specified in Figure 8.4d for the state 
sets of the two systems. 

8.5. MODELS OF GENERATIVE SYSTEMS 

The great danger of analogy is that a similarity is taken as evidence of an identiy. 
-KENNETH BURKE 

As data are required to be preserved in models of data systems, it is required that 
behavior or ST -functions be preserved in models of generative systems. However, there 
is no reason to require that the masks of behavior systems be preserved in their models. 
Indeed, the same results can often be obtained either by support sequences of states of 
one variable or by simultaneous states of several variables. This fact is best exemplified 
by the various units of serial and parallel computers (e.g., serial and parallel adders). 

If transformations in masks between original and modeling generative systems are 
permitted, they replace transformations between their source systems. This implies that 
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source systems of the original and modeling generative systems are related only by their 
supports and support sets. There are, of course, special cases, in which transformations 
between masks are the same as transformations between variables of source systems 
(e.g., memoryless behavior systems). 

As shown in Chapter 3, each ST -system can be uniquely converted to an 
isomorphic behavior system. The discussion of models of generative systems may thus 
be restricted, without any loss of generality, to behavior systems. This also enables us to 
simplify the notation by excluding subscripts B and S, which are normally used to 
distinguish between behavior systems and ST-systems. 

Consider now two neutral behavior systems 

F = (S,M,f), 

F' = (S', M',!'), 

and let F be viewed as an original system. Then, F' qualifies as a modelling system ofF if 

i. there exist one-to-one correspondences between supports and support sets in S 
and those in S' under which recognized properties of the supports are 
preserved, as required in the definition of a similarity between source systems 
(Section 8.3); 

ii. there exists a one-to-one correspondence M +-+ M' between the masks of the 
two systems; 

iii. for each sampling variables Sj of F that is assigned to a sampling variable Sk ofF' 
(i, kEN 1M I) by (ii), there exists a one-to-one correspondence Si +-+ Sk between 
their state sets under which all properties recognized in Sj are preserved in Sk; 

iv. f is preserved in F' under the transformation (one-to-one correspondences) 
(i)-(iii). 

Let a system F' together with some one-to-one correspondences (i)-(iii) that 
preservefbe called a strong-behavior model ofF. This notion can be generalized for 
some purposes in certain specific ways, as discussed later in this section. 

Example 8.5. A modelling relationship between two behavior systems (directed, 
probabilistic) is illustrated in Figure 8.5. It is assumed that the support sets of both 
systems are totally ordered, while no properties are recognized in the state sets. Source 
systems of the behavior systems are not described as they are irrelevant for describing 
the modelling relationship. 

A one-to-one correspondence between sampling variables of the two behavior 
systems is specified by the connections with arrows on top of the tables of behavior 
functions. Transformations between state sets of the corresponding variables are 
expressed by the equations that label the connections. Also indicated in the figure is the 
implied transformation between overall states of the two systems. It is obvious that a 
necessary (but not sufficient) condition for a modelling relationship between two 
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5'4 = 2-51 

5'3 = 52 

5'2 = 2- 53 

! 5'1 = 54 

1 ~ + 
f(c) sl 52 53 54 5' 1 5'2 5'3 5'4 f(c') 

.2 0 0 0 0 

~ 
0 0 2 .1 

.1 2 0 0 2 .1 

.1 2 2 0 0 2 0 2 .2 

.1 2 0 0 ::s< 0 0 .2 

.2 2 2 2 0 .1 

.1 2 2 2 0 0 .1 

.2 2 2 2 2 0 0 2 0 2 2 .2 

I nput variables: sl, s3 Input variables: s'3, 5'4 

Output variables: 52 , 54 Output variables: s'l ' 5'2 

Figure 8.5. Modelling relationship of two behavior systems (Example 8.5). 

behavior systems is that the distribution f' (c') (probabilistic, possibilistic, or some 
other) is a permutation of the distributionf(c). It is assumed that both systems are 
memory less and that their directed behavior functions are derived from their neutral 
counterparts in Figure 8.5. 

Example 8.6. Consider a cylindrical vessel that is connected to a conical vessel by 
a very thin pipe whose volume is negligible (see Figure 8.6). A memoryless and 
deterministic behavior system can be defined on this hydraulic object in terms of two 

Figure 8.6. Hydraulic model of a mathematical behavior system 
(Example 8.6). 
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variables and a relationship between them that follows from the dimensions of the 
vessels. The variables are 

x-the amount of water poured into the vessels, measured in cm3 to an accuracy of 
1 cm3 ; 

y-the height at which the water will settle, measured in cm to an accuracy of 
0.1 cm. 

It is obvious that the variables are observed in time. 
Consider now a mathematical behavior system of two variables x' and y', whose 

behavior function y' = f' (x') is defined by real number solutions of the equation 

py'3 +qy' = x', 

where p, q are some constant coefficients. The hydraulic system can be used for 
appropriate dimensions of the vessels as a model of the mathematical system, i.e., it can 
be used for solving the cubic equation. 

To show the modelling relationship between the two systems, let a and b denote the 
radius of the cylinder (in cm) and the ratio of the radius and altitude of the cone, 
respectively. Then, the amount of water in the cylinder is equal to 

The amount of water in the cone is equal to 

1 2 
3 nr yy, 

where r y is the radius of the cone corresponding to the altitude y (in cm). Since b = r y/ y, 
the amouilt of water in the cone can be expressed as 

The total amount of water in both vessels is equal to x so that 

To convert this to the equation of the mathematical system, expressed in terms of 
variables x' and y', values a and b must be chosen such that they satisfy the equations 

na 2 = q 

!nb 2 = p. 

It follows immediately that the hydraulic system with 

a = (q/n)1/2 
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and 
b = (3pjn)1/2 

is capable of solving the requested cubic equation since the relationship between x and y 
is expressed by exactly the same equation as the relationship between x' and y'. 

When behavior systems are directed, the modelling relationship does not require 
one-to-one correspondences between sets of variables and state sets of the original and 
modelling systems. Input and output mappings can be employed instead, if desirable, as 
discussed in Section 8.3 in the context of directed source systems. 

Example 8.7. A very simple example of the modelling relationship between two 
directed behavior systems is the principle of the slide rule: products of two real numbers 
are determined by adding appropriate distances on two rules. Input and output 
mappings of this well-known example are specified in Figure 8.7, which is self
explanatory. 

(numbers) x y 

" F 

" f : z = xy 
(a number) 

Figure 8.7. Slide rule as a model of behavior. 
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Examples 8.8. To illustrate a modelling relationship between directed behavior 
systems in which input mappings are not one-to-one, assume 

• an original system that consists of input variables x, y, an output variable z, and 
the behavior function (deterministic, memoryless) 

z = 3 sin (x + y); 

x Y r---------------- - --------j 
I MODEL OF F I 

x 

I 
I 

Y I 

r--""'----'---, I 
I 

I 
L 

L _ _ 

f: l = 3 sin (x+y) 

Xl (= sin x) 

---: t 
____ ---...I 

Yl (= sin y) 

MODE L LI G SYSTEM F' 

A 

f'; z' = Xl Y2 + x2Yl 

----:1 
____ .J 

OUTPUT MAPP INGS 

(one-to-one) 

z = 3z' = 3(x l Y2 + x2Yl) 
= 3 (sin x cos Y + cos x sin y) 
= 3 sin (x+y) 

I 
I 
I 
I 
I 
I 

Gsl 
I 
I 
I 
I 
I 
I 

Figure 8.8. Modelling relationships between two directed behavior systems in which the input 
mappings are not one-to-one (Example 8.7). 
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• a modelling system that consists of input variables Xl, X2, Yl' Y2' output variable 
Zl, and the behavior function 

Assume further that both systems are based on the same support. 
Although the two behavior functions look quite different, the second system can be 

employed as a modelling system under proper input and output mappings. Such 
mappings are specified in Figure 8.8. Observe the inverted orientation of the mappings 
between the sets of variables and those between the respective state sets. 

Example 8.9. Consider a simple electric circuit with two semiconductor diodes 
whose diagram is shown in Figure 8.9. It has two input variables X, Y and one output 
variable z, all of which represent voltages. Assume that only two different voltage 
magnitudes are presented at the inputs, one of which is low and the other high with 
respect to the constant voltage V. Let these two magnitudes (states of the variables) be 
denoted by Land H, respectively. When applying each combination of these two 
voltages a! the inputs and measuring the output variable, we would obtain the behavior 
function f specified in Figure 8.9b, where symbols L, H have the same meaning for the 
output variable and the input variables. 

Assume now that we want to utilize the behavior system defined on the electric 
circuit for modelling logic functions. This can be done by introducing relev~ant 

propositions regarding the three physical variables and then using function f to 
determine the truth values of each proposition. Relevant propositions are of two kinds; 
either "variable X (or Y or z) is in state L," or "variable X (or Y or z) is in state H." The 
physical system may be utilized for modelling different logic functions depending on the 
combination of the two kinds of propositions that is applied to the three variables. For 
instance, if the first kind of proposition is applied to all three variables, then states L or 
H make the corresponding proposition true or false, respectively. Let T, F denote the 
truth and falsity, respectively, of the individual propositions. Then, the utilization of the 
physical system for modelling the logical function OR (disjunction) is illustrated in 
Figure 8.9c. All logic functions that can be modeled by the physical system are 
summarized in Figure 8.9d, where numbers 1 and 2 are labels of propositions of the first 
and second kind, respectively. 

In a manner analogous to the notion of global data modelling we can also 
introduce the notion of global behavior modelling. It is defined in terms of a one-to-one 
correspondence between overall states of sampling variables of two behavior systems 
under which their behavior functions are preserved. That is, a global behavior 
modelling is an isomorphic relation between two sets of overall states. 

Example 8.10. The relationship of global data modelling discussed in 
Example 8.4 (mosaic) can be easily reformulated as a relationship of global behavior 
modelling. Consider a two-column mask and let Vi; and v~ be defined by the equations 

v'{.t = V'1,t+1 and v~.t=V~,t+I' 
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Figure 8.9. Physical system capable of modelling several abstract systems (Example 8.9). 
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is the set of all overall states of the sampling variables (according to the data specified in 
Figure 8.4c). The system is deterministic: states of generated sampling variables v';, v~ 
are uniquely determined by states of the generating variables V'I' v~. Under the one-to
one correspondence specified in Figure 8.4d, it is isomorphic to the system representing 
the mosaic, provided that the latter is reformulated as a behavior system in the same 
manner. 

Modelling relationships between behavior systems can be generalized by replacing 
the transformation between masks by a transformation between locations (cells) of 
specific segments of data arrays under which the generated data are preserved for the 
same initial conditions. Let us illustrate this possibility by an example. 

Example 8.11. Consider a modelling relationship between a serial binary adder 
(see Example 4.9) and a parallel binary adder. Assume that the adders are employed for 
adding pairs of binary numbers with 16 digits each. Then, the masks and behavior 
functions of the serial and parallel adders are specified in Figures 8.l0a, b, respectively. 
Variables x, y (or Xi' y;) represent digits of the numbers to be added, z (or z;) is the sum 
digit, and c (or c;) is the carry to the next place. The support is time in both cases. 

The parallel adder is memoryless. It consists of 64 variables and adds two 16-digit 
binary numbers in one discrete time. The serial adder needs 16 successive discrete times 
to perform the same addition. The two numbers are represented in the serial adder by a 
time sequence of 16 states of the input variables X, y, and the sum is represented by a time 
sequence of 16 states of the output variable z, together with the last state of variable c, as 
illustrated in Figure 8.10c; the last state of c has the meaning of the most significant digit 
of the sum. Assume that immediately after one operation of addition is completed, 
another one begins with an appropriate initial condition (the carry is reset to zero). 

To characterize a modelling relationship between the two adders, it is obviously not 
sufficient to define it solely in terms of one-to-one correspondences between their 
sampling variables, state sets, and support sets. A combined transformation that involves 
the sampling variables together with the support set must be introduced. Such a 
transformation is in this case a one-to-one correspondence between states of variables 
Xi' Yi' Zi' Ci at times tp and states of variables X, y, z, c at times ts = i + 16(tp -1), 
respectively (i E N 16), where tp and ts denote the times of the parallel and serial adders, 
respectively. We can see that if 

and Yi c = Xc , p , 
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z = x+y+C_1 (mod 2) 

C = [X+Y+C_1-(X+Y+C_1) (mod 2)1/2 

(a) 

Zi = Xi+Yi+ Ci-1 (mod 2) 

Ci = [Xi+Yi+ Ci-1-(Xi+Yi+ ci_1)(mod 2)1/2 

(i c: N 1.' Co = 0) 

(b) 

2 3 14 15 16 

x 

Y 

z 

c 

(c) 
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Figure 8.1 o. Modelling relationship between serial and parallel binary adders (Example 8.11). 

for all ieNl6 , then 
z·/ = z/ and I, p s 

for all i e N 16 under this combined transformation, i.e., the adders can replace each 
other to perform the same task. In fact, it is sufficient to satisfy the second equation 
only for i = 16 (the last carry). 

The combined transformation, illustrated by the serial and parallel adders, involves 
a translation in the support set of one of the systems whose modelling relationship is 
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under consideration. It introduces new variables in a manner analogous to the definition 
of sampling variables. Since these variables are introduced for the purpose of 
establishing a modelling relationship with another system, it is appropriate to call them 
modelling variables. 

There are various ways in which a general model of behavior can be formally 
defined in terms of the combined transformation between modelling variables, along the 
lines suggested in Example 8.11. The reader should be able at this stage to develop his 

own favorite formulation. 

8.6. MODELS OF STRUCTURE SYSTEMS 

... although the modelling relation appears to be dyadic, it is in effect triadic; 

anything can be taken as a model of anything else if and only if we can sort out the 

relevant respects in which one entity is like another, the relevant properties which 
have both in common. 

~MARX W. W ARTOFSKY 

As emphasized previously, the purpose of replacing one system (an original 
system) by another (a modelling system) is to gain some advantage in dealing with a 
problem regarding the original system. When one structure system is used for modelling 
another structure system, it is often sufficient that the constraint among some set of 
variables be preserved (under appropriate mappings between variables, supports, state 
sets, and support sets), and it is totally irrelevant whether or not the structure of the 
original system (its elements and couplings among them) is preserved in its model. The 
constraint of interest is obtained for both the original structure system and its model by 
a specific composing procedure, as explained in Chapter 4. Models of this sort are 
actually models of generative systems, even though the generative systems involved are 
derived from the corresponding structure systems. 

Any two structure systems that have the same unbiased reconstruction in the 
reconstruction problem (Section 4.7) are examples of a modelling relationship of this 
kind. Another example is the modelling relationship between serial and parallel adders, 
which is discussed in Example 8.10. 

A genuine model of a structure system must preserve not only the constraint 
among variables involved, but also the structure (i.e., elements and couplings) of the 
original. It is important to realize, however, that elements of the modelling system need 
not be the same as those of the original system. They are only required to satisfy the 
modelling relationship pertaining to the epistemological level at which they are defined. 

Consider two structure systems 

SX = {eV, iX)liENq }, 

SX' = {eV', iX')ljENq }, 
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where iX, jx' denote source, data, or generative systems, either neutral or directed, and 
X, X' are symbols of systems types. Let SX be viewed as an original system. Then, SX' 
qualifies as a modelling system of SX if there exists a one-to-one correspondence 
between the elements of SX and SX', say 

r----------------, 
SYSTEM SF 

v2 ----~--~----+__.----~--------_, 

v3----~--------+__+----~--~----_+__, 

(a) 

L _______________ ....J 
v7 = v 1 v2 + vI v3 + v2 v3 

r-------------------i 
1 SYSTEM SF' 

x2 -.~--------4_ __ --------_+------------, 

x3~~--------~+_--------_;~----------~ 

(b) 

L __________________ ~ 
x7 

Figure 8.11. Structure systems discussed in Example 8.12. 
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under which 

I. if j = z(i), then iX' together with appropriate mappings is a model of iX; 
ii. all couplings of SX are preserved in SX' under the mappings involved in the 

modelling relationships between elements iX and iX' (i,j E N q). 

---- -- ------------------ - ---, 
Vl __ --r---_e---------------, MOD EL OF SF 

V3----r----+-----4~-------+----~~------~----~ 

L _______________________ _ J 
v7 = vl v2+ vl v3 +v2 v3 

Figure 8.12. A model of the structure system specified in Figure 8.11a (Example 8.12). 
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Example 8.12. Consider a structure system sf' described by the block diagram 
in Figure 8.l1a. Variables VI' V2 , •.. , V7 represent propositions. Each of them has two 
states: true (T) and false (F). The system implements majority function (see 
Example 4.8): its output variable V7 is in state Tifand only if two or three of the input 
variables VI> v2 , V3 are in state T. 

Consider now a structure system SF' described by the block diagram in 
Figure 8.1 lb. Its elements are electric circuits with semiconductor diodes whose 
behavior is described in Example 8.9. This system can be used to model the structure 
system under the identity mapping 

z:j = i, 

provided that appropriate mappings are introduced between variables and state sets of 
the two systems by which elements of system sf' become models of the corresponding 
elements of system sf, the full model of Sf, which is based on system sf' is described 
in Figure 8.12;]' denotes behavior function defined in Figure 8.9b and J denotes an 
extension of the same function for the three input variables (i.e., the output variable is 
in state H only if all input variables are in state H). It can easily be seen that 

i. each element of SF is represented by a model in the overall model of the 
structure system SF; 

ii. all couplings between elements of SF are preserved in terms of couplings 
between their models in the overall model of SF. 

8.7. MODELS OF MET ASYSTEMS 

... the use of models and so-called "analogies" in science is simply a change of 
language: one configuration is used to represent another. 

-AARON SLOMAN 

Although metasystems are suitable for modelling purposes in some situations, it is 
normally sufficient that the modelling metasystem preserve only the constraint among 
some variables (under appropriate mappings between variables, supports, state sets, 
and support sets) that is represented by the original metasystem. It is usually irrelevant 
whether or not the elements and replacement procedure of the original metasystem are 
also preserved in its model. If they are not preserved, the model is actually not a 
metasystem model, even though metasystems are involved. 

A genuine model of a metasystem must preserve not only the constraint among the 
variables involved, but also the elements and replacement procedure of the original. 
Given two metasystems, 

MX = (W, !!£, r). 

MX' = (W', !!£', f), 
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where :!{, fi£' are sets of their elements, let MX be viewed as an original meta system. 
Then, MX' qualifies as a modeIIing metasystem of MX if there exists a one-to-one 
correspondence between fi£ and :!(', say 

z: fi£' ..... fi£ 
under which 

I. if x' = z(x), then x' together with appropriate mappings is a model of x; 
n. the replacement procedure r is preserved in MX' under a one-to-one corre

spondence between Wand W', and the mappings involved in the modeIIing 
relationships between elements in fi£ and fi£' assigned to each other by z. 

It is left to the reader as an exercise to generalize this definition to metasystems of 
higher order and to construct some examples of models of metasystems. 

NOTES 

8.1. For an introduction to the theory of similarity, a book by Gukhman [GU3] is 
recommended. More extensive coverage, with applications to heat conduction and diffusion, 
fluid dynamics, elastic deformation, and chemical reactions, can be found in a book by Sziicz 
[SZI]. Some additional references may also be useful [LA2, SKI]. 

8.2. It seems that the most natural mathematical formalism for dealing with the various 
kinds of systems similarities is offered by category theory [AR2, G02, HE3]. This formalism is 
not pursued in this chapter since category theory has not been incorporated into general 
education as yet and, consequently, it would be unreasonable to assume that the reader is familiar 
with it. Interested readers may consult a book by Rosen [R06] in which a category-theoretic 
formulation of systems similarity is outlined. 

EXERCISES 

8.1. Determine the affine transformation between 
(a) two circles of different size; 
(b) a circle and an elipse; 
(c) a square and an oblong. 

8.2. The position of the center of a metal ball suspended by a spring and subjected to external 
force (Figure 8.l3a) is characterized by a function x(t) of time that satisfies the differential 
equation 

mx+rx+ex =/(tj, 

where m, r, e denote the mass of the ball, coefficient of mechanical resistance, and elasticity of 
the spring, respectively, and / (t) represents an input (externally impressed) force, acting 
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c 

(a) (b) 

Figure 8.13. An example of similar systems (Exercise 8.2). 

vertically upon the ball in time. Electric current in the circuit shown in Figure 8.13b is 
described by a function i(t) of time that satisfies the differential equation 

a+Ri+i/C = v(t), 

where L, R, C denote the inductance, resistance, and capacitance of the circuit, respectively; 
v(t) represents an ideal source of voltage. Discuss the similarity between the two systems, in 
whichf, v and x, i are viewed as input and output variables, respectively. 

8.3. Explain the principle of the Laplace transform in terms of the model of behavior. 
8.4. Formulate a modelling relationship between an appropriate source system for describing 

some sort of mosaic (e.g., Example 8.4) and a source system for describing musical scores 
(e.g., Example 2.8). Apply the modelling relationship for converting a specific mosaic into the 
corresponding musical score and vice versa. 

8.5. Assume that the behavior functions of two directed, deterministic, and memoryless behavior 
systems F Band Fs are expressed by the tables 

VI v2 V3 XI X2 X3 

0 0 1 0 0 0 
lB: 0 1 0 Is: 0 1 

1 0 0 1 0 
0 

respectively. Specify the input and output mappings under which 
(a) system FB becomes a modelling system of F B; 
(b) system F B becomes a modelling system of FB. 

8.6. Change states of X3 in Exercise 8.5 to obtain a system that cannot be used as a modelling 
system of F B. How many such changes are there? 



www.manaraa.com

414 CHAPTER 8: SYSTEMS SIMILARITY 

8.7. Let each of the following pairs of equations represent behavior functions of two directed 
behavior systems (deterministic and memoryless). Assume that output variables are on the 
left sides of the equations. For each of the pairs, find input and output mappings such that 
the latter system, together with the mappings, can be used to model the former: 
(a) V3 = Vl V2 , X3 = (Xl +X2)2 - (Xl -X2)2; 

(b) V2 = 2COS2 Vl' X 2 = 1/(1 +xd; 

(c) V3 = aV l +bv2 , X3 = eX l +dx2 ; 

8.8. A set of ST-functions is defined by the directed graphs in Figure 8.14. The edges shown 
represent all possible transitions in each case. Determine pairs of these ST -functions that can 
be used to model each other. 

8.9. Two directed behavior systems, P Band Pli, are defined on simple electric circuits as shown 
in Figure 8.15. 
(a) Considering the resistors as elements, convert the behavior systems to the corresponding 

structure systems SF B and SF~. 
(b) Show that SF~ can model SF B and vice versa. 

(c) 

(d) (e) 

Figure 8.14. Illustration to Exercise 8.8. 
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Source of electric current Source of electric voltage 

" 
R, 

i, R, 

v 

i, , 2 

(a) (b) 

Figure 8.15. Illustrations to Exercise 8.9. 
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GSPS: ARCHITECTURE, USE, 
EVOLUTION 

Perhaps it is true that nothing worth knowing can be taught-all the teacher can do 
is to show that there are paths. 

-RICHARD ALDINGTON 
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9.1. EPISTEMOLOGICAL HIERARCHY OF SYSTEMS: FORMAL DEFINITION 

Philosophy may be ignored but not escaped; and those who most ignore least 
escape. 

-DAVID HAWKINS 

~ Epistemological types of systems that are recognized within the GSPS 
framework include source systems and their components (object systems, specific and 
general image systems), data systems, generative systems (behavior systems or ST
systems), structure systems of various types and levels, and metasystems of various types 
and levels. In addition, each of these systems types can be either neutral or directed. 

The GSPS epistemological types of systems can be partially ordered. Given two of 
them, say types x and x', we say that x is an epistemologically lower systems type than x' if 

and only if 

i. given any particular system of type x', there exists a unique procedure based 
solely on this system and using all information available in it by which a single 
system of type x is derived for appropriate initial and other relevant conditions; 
and 

ii. given a particular system of type x, there is no procedure by which a single 
system of type x' can be derived solely from it, i.e., there is always some 
ambiguity and, consequently, some degree of arbitrariness in the determination 
of a system of type x' from a given system of type x. 

Given two epistemological systems type, x and x', let the symbol 

X~X' 

denote that type x is epistemologically lower than type x'. Then, the pair 

.Te, = (tI" -<), 

where tI, denotes the set of all GSPS epistemological systems types (either neutral or 
directed) such that the combined number oflevels of structure systems and metasystems 

419 
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in any systems type does not exceed I (l EN), defines the GSPS epistemological hierarchy 
of systems. 

For each lEN, $1 is a semilattice. If only homogeneous structure systems or 
metasystems are considered, $1 consists of 

(9.1) 

elements. An example for I = 2 is given in Figure 9.1. For an arbitrary finite I, $1 

(restricted to homogeneous structure systems and metasystems) is defined by Table 9.1. 
Symbols 

and 

stand for the sequences 

and 

Figure 9.1. Semilattice of the GSPS epistemological systems types in which the combined 
number of structure systems and metasystems in any systems type is two or less: .tf 2 = ( 8 2, ~ ). 
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TABLE 9.1 
Epistemological Hierarchy (Semilattice) of the 

GSPS Systems Types: Jft'/ = (8/, :S). 

Systems type 

S 
D 
F 
(SS'M",,)iS 

Immediate successor in the semilattice 

None 
S 
D 
(ss,-I Mm,)iS for a particular i, 
(ss'M",,-I)iS for a particular i 
(SS, -I M",,)i D for a particular i, 
(ss'M",,-I)iD for a particular i, 
(SS'M",,)iS 
(SS, -I M",,)i F for a particular i, 
(ss'M",,-I)iF for a particular i, 
(SS'M",,)iD 
(Mm,-ISS,)iS for a particular i, 
(Mm,ss,-I)iS for a particular i, 
(Mm,-lss,)iD for a particular i, 

(Mm,SS,-I)iD for a particular i, 
(M""Ss,)iS 

(MIII,-lss,)iF for a particular i, 
(M""ss,-I)iF for a particular i, 
(MIII'SS,)iD 

421 

respectively, where X denotes a systems type, and j, Sj, mj (i E Nq ) are some natural 
numbers; it is allowed that mj = 0 in the former sequence and Sj = 0 in the latter 
sequence, and SoX, MOX is interpreted as X. It is required that 

L (Sj +mJ:S I . .... 
jENJ 

9.2. METHODOLOGICAL DISTINCTIONS: A SUMMARY 

Too large a generalization leads to mere barrenness. It is the large generalization, 

limited by a happy particularity, which is the fruitful conception. 
-ALFRED NORTH WHITEHEAD 

Each class of systems characterized by an epistemological type is further classified 
by the methodological distinctions that are applicable to it. As explained previously 
(Chapters 2, 3), the aim of methodological distinctions is to distinguish systems that 
require different methods when involved in systems problems. 
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TABLE 9.2 
A Summary of Essential Methodological Distinctions Recognized at the Architectural 

Level of the GSpst 

Applicable to Examples of 
System Methodological epistem. types possible 
trait distinctions of systems extensions Cross-references 

Variables Neutral 
All Mixed Sec. 2.5 

Directed 

Observation Crisp 
All Mixed 

Eqs. (2.2), (2.3) 
channels Fuzzy Eqs. (2.8H2.10) 

State sets No property All Interval scales Secs. 2.3, 2.4 

and Meaningful Ratio scales (Fig. 2.2, 
support sets combinations Other scales Table 2.1) 

of properties 
of ordering, 
distance and 
continuity 

Data Completely D or XD Sec. 2.6 
specified 

Incompletely 
specified 

With "don't 
care" entries 

Data Crisp 
DorXD Mixed 

Eq. (2.21) 
Fuzzy Eq. (2.27) 

Data Periodic DorXD Mixed Sec. 2.6 
Aperiodic 

Mask Memoryless For XF Compact Sec. 3.2 
Memory-

dependent 

Constraint Behavior For XF Sec. 3.8 
function function 

ST-function 

Behavior Deterministic For XF Based on Eqs. (3.14), (3.16) 
or ST Probabilistic other subsets Eqs. (3.18), (3.19) 
function Possibilistic of fuzzy mea- Eqs. (3.20), (3.21) 

sures 

Elements Consistent SXF Sees. 4.3, 4.4 
of structure Inconsistent 
systems 

t X denotes a sequence of operators Sand M. F denotes generative systems of all types. 
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Selection of appropriate methodological distinctions for the various epistemolo
gical types of systems is an important issue in the GSPS architecture. The selection 
should begin with the most general methodological distinctions, applicable to the 
various systems traits, and proceed in increasing order of specificity. It is desirable to 
order the resulting methodological distinctions by their specificities. Since several 
categories are always combined, the resulting ordering is only partial. 

At the architectural level, it is desirable to identify basic categories of meth
odological distinctions and commit only to a small set of important and rather general 
distinctions in each category. At the same time, however, the GSPS architecture should 
allow for desirable extensions of these sets in the various GSPS implementations. 

Methodological distinctions that are considered sufficiently significant to be 
recognized in the GSPS architecture are introduced at various places in this book in 
connection with the individual epistemological types of systems. A list of categories of 
these essential distinctions is given in Table 9.2. Each category is characterized by the 
system trait for which it is defined, a list of its individual methodological distinctions, 
epistemological types of systems to which it applies, examples of possible extensions, 
and appropriate cross-references. 

9.3. PROBLEM REQUIREMENTS 

As soon as a problem is clearly defined, its solution is often simple. 

-ROBERT ROSEN 

Problem requirements define problems on a set of recognized systems. Each 
requirement involves either a single system or a pair of systems. In a manner similar to 
that in which systems are classified into systems types, problem requirements are 
classified into requirement types. When properly defined, each requirement type should 
be such that variations of specific requirements within it do not demand methodological 
variations. 

Although specific problem requirements as well as their types are meaningful only 
in connection with the individual system types, four broad categories of problem 
requirements can be recognized, in general. Each requirement can be either a 
requirement to answer a question, a requirement to satisfy a request, a requirement to 
achieve an objective, or a requirement to satisfy some restriction. Several requirements 
may be combined in a single problem, e.g., one or more objectives may be combined 
with one or more restrictions. 

As emphasized on a number of occasions, the GSPS should allow the user to define 
his own choice of specific requirements within each of the recognized requirement types. 
Once a requirement type is identified, which can be done only in the context of one or 
two systems types identified prior to the requirement type, the user should be invited to 
define his own choice of a specific variant of this type. If he does not take this 
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opportunity, the GSPS should otTer him a "menu" of available options, one of which is 
declared as a default option. If he does not care to select one of them, the GSPS should 
use the default option. 

At the architectural level, it is desirable to commit for each systems type or a pair of 

systems types only to a limited set of essential requirement types. It is assumed that this 
initial set will be gradually extended in the process of the evolution of GSPS 
(Section 9.8). 

Types of problem requirements cannot be defined in isolation from the types of 
systems to which they are applied. Each of them together with the systems types 
involved forms a problem type. Requirement types are thus definable only as parts of 
problem types. The most significant requirement types, which are introduced in various 
contexts within the book, are summarized in the next section. 

9.4. SYSTEMS PROBLEMS 

It must, in a/ljustice, be admitted that never again will scientific life be as satisfying 

and serene as in the days when determinism reigned supreme. In partial recompense 

for the tears we must shed and the toil we must endure is the satisfaction 

of knowing that we are treating significant problems in a more realistic and 

productive fashion. 

-RICHARD BELLMAN 

Systems problems are formed by systems and requirements that are relevant to the 
systems involved. They are naturally classified into problem types according to the 
underlying classification of systems and requirements into types. 

Some problems may involve a single system. Let these problems, which have the 
form of a question or request regarding some properties of the given system, be called 
elementary problems. For example, given a particular ST-system, we may ask: "is any 
state reachable from any other state?"; or, alternatively, we may request for each pair of 
states a list of the shortest sequences of transitions from one of the states to another. 

For each systems type recognized, the GSPS should be equipped to deal with 
elementary problems as comprehensively as possible. An important subset of elemen
tary problems consists of validity (correctness) tests regarding systems specified by users. 
They include, for example, tests of required properties of probability or possibility 
distributions involved, various consistency conditions, control uniqueness, and the like. 
These tests should be executed by the GSPS authomatically for each particular system 
specified by the user in the process of his problem formulation. If any of the tests fails, 
the system must be rejected as invalid and the user informed of the reasons. 

All systems that do not belong to the category of elementary problems involve two 
or more systems. Of these, problems that involve two systems are explicitly defined and 
methodologically supported in the GSPS; let them be referred to as basic problems. The 
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remammg problems, each of which involves more than two systems, are then 
expressed and dealt with in terms of appropriate sequences of basic and elementary 
problems. 

Basic systems problems are classified into problem types. Each of them consists of 
an ordered pair of systems types and a set of requirement types that are applicable to the 
systems types involved. Since a problem solution is always oriented from some given 
entities to some unknown entities, the order of systems types is essential for describing 
this orientation. The first of the two systems types is viewed as a general characterization 
of an initial system, i.e., a system that is given in a particular problem of the given type. 
The second systems type characterizes the class of systems in terms of which the solution 
is expressed; let them be called terminal systems. According to the role of terminal 
systems, systems problems of two kinds can be recognized. 

Problems of the first kind have the following canonical formulation. Given a 
particular initial system of type z, determine those terminal systems of type z' for which 
given requirements (relevant to systems types z and z') are satisfied. The solution of a 
problem of the first kind is thus a set of particular systems of type z'. 

Problems of the second kind have a different canonical formulation. Given a 
particular initial system of type z and a particular terminal system of type z', determine 
some property, specified by given requirements, of the terminal system in relation to the 
initial system. The solution of a problem of the second kind is thus some property by 
which the two given systems are related. 

An example of a problem type of the first kind is the problem of deriving from a 
given data system all generative systems that satisfy the requirements of minimal misfit, 
complexity, and generative uncertainty, and whose masks are submasks of a specified 
largest acceptable mask. This problem type is formulated in Section 3.4 and discussed in 
Section 3.6; it is summarized in Figure 9.2. 

An example of a problem type of the second kind is the problem of determining the 
change in the performance of a behavior system due to some specified variables. In this 
problem type, which is discussed in Section 7.3, some property of the initial system 
represents a goal, and the performances of the terminal system with and without the 
specified variables are compared in terms of a specified performance function. 
A summary of this problem type is given in Figure 9.3. 

Problem categories that represent the GSPS kernel are depicted in Figure 9.4. Each 
problem category is characterized by the epistemological types of systems involved; it is 
represented in the figure by an arrow labeled with an integer identifier. Problem 
categories are clusters of problem types. Each of them contains problem types that differ 
from each other in methodological distinctions and requirement types, but involve the 
same pairs of epistemological types of systems. 

Some key problem types in the categories shown in Figure 9.4 are outlined, either 
directly or as parts of larger problems, in previous chapters of this book. The following 
is a summary of these problem types, classified by categories. 

Categories 1-6 obviously include all elementary problem types associated with the 
individual epistemological system types, but they include many basic problem types as 
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Figure 9.2. An example of a basic problem type of the first kind (see Sections 3.4 and 3.6). 
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Figure 9.3. An example of a basic problem type of the second kind (see Section 7.3). 
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Figure 9.4. GSPS kernel: a summary of key problem categories. 

well. In particular, they contain the following classes of basic systems types: 

• various problem types of systems simplification, as exemplified by the problems 
discussed in Section 3.9; 

• various problem types associated with the modelling relationship between 
systems, as discussed for the individual epistemological levels in Chapter 8; 

• various problem types in which systems at the individual epistemological levels 
are compared according to some criteria, e.g., by their complexities (Chapter 6), 
their performance with respect to various goals (Chapter 7), their information 
loss (Sections 4.6-4.8), etc. 

Categories 7 and 8 include problem types in which data are partitioned, according 
to specified criteria, with respect to the variables or support set involved. 

Categories 9 and 10 consist of problem types in which an overall data system is 
determined from elements of a structure system or a metasystem, respectively. They 
include, for example, problem types in which resolution of data inconsistencies is 
required, such as those mentioned in Section 4.3 for structure data systems. 

Categories 11-13 contain various problem type in which data are generated by 
epistemologically higher types of systems for specified initial and other conditions. In all 
problems of these categories, the GSPS is used as a tool for computer simulation. 

Category 14 consists of problem types in which generative systems are derived 
from given data systems under specified requirement types. As discussed in Sections 3.4, 
3.6, and 3.10, it is usually required that the resulting generative systems be based only on 
masks that do not exceed a specified largest acceptable mask, that the data they generate 
be in perfect fit with the given data, and that their generative uncertainties and 
complexities be minimized. Additional requirements may be added to these problems, 
such as further restrictions on the resulting generative systems or optimization criteria 
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expressed in terms of special preference relations defined on the relevant set of 
generative systems. Also included are the problems associated with the introduction of 
internal variables, as discussed in Section 3.10. 

Categories 15 and 16 consist basically of the same problem types as those in 
category 14, but each individual problem must be repeated for all elements of the given 
structure data system or data metasystem, respectively. 

Category 17 contains problem types associated with the determination of 
reconstruction families, unique reconstructions based on various requirement types, 
and related issues, as discussed in Sections 4.6-4.8. 

Category 18 represents problem types associated with the simulation of generative 
systems by metasystems of various methodological types. 

Category 19 includes various types of decomposition problems involved in systems 
design (Section 4.5), as well as some aspects of the reconstruction problem (Sections 4.7, 
4.8). 

Category 20 subsumes all problem types associated with the identification of 
support instances that are associated with changes in the constraint among variables of 
a given generative system. These problem types are exemplified by the problem type 
discussed in Section 5.6. 

Most problem types of practical significance require sequences of basic or 
elementary problem types. For example, the reconstruction problem type introduced in 
Section 4.7 involves a sequence of problem types from categories 4,5,17,19; some types 
of design problems require problem types from categories 11, 14, 17, 19; certain kinds of 
computer simulation may involve problem types from categories 11 and 17 or 11 and 18, 
etc. 

9.5. GSPS CONCEPTUAL FRAMEWORK: FORMAL DEFINTION 

When a philosopher invents a new approach to reality, he promptly finds that his 

predecessors saw something as a unit which he can subdivide, or that they accepted 

distinctions which his system can name as unities. The universe would appear to be 

something like a cheese; it can be sliced in an irifinite number of ways-and when one 

has chosen his own pattern of slicing, hefinds that other men's cutsfall at the wrong 
places. 

-KENNETH BURKE 

.. The following definitions relate the adjectives "identifiable" and "admissible" 
with the terms "system," "requirement," and "problem." We say that a system, 
requirement, or problem is identifiable if it can be formulated in terms of the GSPS 
language; we say that it is admissible if it is identifiable and can be dealt with in the 
context of a particular GSPS implementation. In addition, we say that a problem is 
solvable if it is admissible and can be solved by the methodological tools available in a 
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particular GSPS implementation. These adjectives apply to particular systems, 
requirements and problems as well as to their types. 

Let !![ denote the set of all admissible epistemological types of systems. Then, 

where g denotes the set of all identifiable epistemological systems type. Typically, 

for some particular I ~ 1, where ,g"[ (/ EN) is the set of all identifiable epistemological 
systems types in which the combined number of structure systems and metasystems is I 
or less. 

Let 0/1 denote the set of admissible types of methodological distinctions and let :!l: 
denote the set of all admissible types of systems. Then, 

:!l: c !!{ x 0/1, 

:!l: is a proper subset of !![ x 0/1 since some methodological distinctions are not 
applicable to all epistemological types of systems. Let Y be the set of all admissible 
systems (i.e., particular systems, not systems types). Then, :!l: imposes a partition 

on Y, where Y z denotes the set of all admissible systems of type z. Let 

Sz. i E Y z (z E :!l:). 

Then sz. i is an admissible system of type z identified (distinguished from other systems 
of type z) by identifier i. 

Let flz denote the set of all admissible requirement types that are applicable to a 
single system of type z and let flz. z, denote the set of all admissible requirement types 
that are applicable to a pair of systems of types z, z'. Then, we can define 

and 

The set 

ZE !!t 

2 fl = U fl z . z" 
Z,Z'E !!t 

obviously consists of all admissible requirement types, 
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Let ~z be the set of all admissible requirements (i.e., particular requirements, not 
requirement types) that are applicable to a single system of type z. Then, fLz imposes a 
partition 

on [liz, where fYlz. j denotes the set of admissible requirements of type j that are 
applicable to a single system of type z. 
Let 

rz.j.uE[liz.j' 

i.e., let r z. j. u denote an admissible requirement of type j that is applicable to a single 
system of type z and is uniquely labeled by an identifier u. 

Let [liz. z' be the set of all admissible requirements that are applicable to a pair of 
systems of types z and Z'. Then, fL z. z' imposes a partition 

[Ii ,/fL ,= {fYl 'klq 'kEfL ,} Z.Z Z.Z z.x, z,z, z,z 

on [liz. z', where [liz. z'. k denotes the set of all admissible requirements of type k that are 
applicable to a pair of systems of types z and Z'. 

Let 

rz. z'. k. u E [liz. z'. b 

i.e., rz. z', k. u denotes an admissible requirement of type k that is applicable to a pair of 
systems of types z and Z', and is uniquely labeled by an identifier u. 

The notions introduced of admissible systems, requirements, and their types make 
it possible now to define admissible problems and their types. Let 1 f!J> and 2 f!J> denote, 
respectively, the set of all admissible types of elementary problems and the set of all 
admissible types of basic problems. Then, 

1[J> = {(z,qz.)lzE.2',qz.jEfLz}' 

2fJ> = {(z,zl,qz.zl.k)lz,z' E.2',qz.z'.k EfLz.z'}' 
and 

is the set of all admissible problem types. Although z may be the same systems type as z' 
in the formulation of 2 [J>, these two types of systems stand for two different systems in 
each particular basic problem. This distinguishes basic problems from elementary 
problems, each of which involves only one particular system. 

On the basis of the characteristics of requirement types in fLz z' (z, Z' E .2'), set 2 f!J> is 
naturally partitioned into sets 21 f!J> and 22 f!J> of basic problem types of the first and 
second kind, respectively. 
Hence, 

f!J> = 1 f!J> U 21 f!J> U 22 f!J>. 
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Set !E imposes a partition 

on 1 f!IJ, where 1 f!lJz denotes the set of all admissible types of elementary problems that 
are applicable to systems type z. Similarly, set !E2 imposes a partition 

on set 2 f!IJ, where 2 f!lJz, z' denotes the set of all admissible types of basic problems that are 
applicable to a pair of systems of types z, Z/, Similar partitions can also be defined on 
sets 21 f!IJ and 22 f!IJ. Observe that sets 1 f!lJz and 2 f!lJz, z' are categories of problems in the 
sense discussed in Sections 9.4 and illustrated in Figure 9.4. 

Let 1 f!IJf!IJ denote the set of all admissible elementary problems. Then, set 1 f!IJ 
imposes a partition 

on 1 f!lJf!IJ, where 1 f!lJf!IJz, j denotes the set of all admissible elementary problems that are 
defined in terms of a single system of type z and a requirement of type qz, j' 

Let 2 f!IJ f!IJ denote the set of all admissible basic problems. Then, set 2 f!IJ imposes a 
partition 

on 2f!IJf!IJ, where 2f!IJf!lJz,z'.k denotes the set of all admissible basic problems that are 
defined in terms ofa pair of systems of types z and Z/, and a requirement of type qz, Z', k' 

Each set 2 f!IJ f!IJ z, z', k is further partitioned into subsets of basic problems of the first and 
second kind, say subsets 21f!IJf!lJz,z',k and 22f!IJz,z',k' respectively. Then, 

where the set unions are taken over all z, Z' E !E and qz. z·. k E ..2z. z" are the sets of all basic 
problems of the first and second kind, respectively. 

Three fundamental kinds of admissible problems can now be described formally: 
Elementary problems, say 1 Pa., have the form 

1p = (s . r . ) 
/I Z, I' z.J. II , 

where IX denotes a unique identifier of quadruples (z, i,j, u). 
Basic problems of the first kind, say 21 PfJ, have the form 

21p - (s Z' r ) fJ - z.i' , z.z'.k.u' 
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where P denotes a unique identifier of quintuples (z, i, z', k, u); 
Basic problems of the second kind, say 22py have the form 

where y denotes a unique identifier of sixtuples (z, i, z', t, k, u). 
Let 99 denote the set of all admissible problems definable within the GSPS. 

Then, 
99 c e 99 u 2 1 99 u 2 2 99)*, 

where the asterisk denotes the set of all sequences that can be formed by elements of the 
set, i.e., all sequences of elementary or basic problems. Similarly, set 9 of all admissible 
problem types of the GSPS is defined by 

where 19, 21 9, 22 f!} are finite sets of elementary and basic problem types. 
We can see now that the GSPS conceptual framework can be viewed at this global 

level as a language for describing admissible types of systems problems whose alphabet 
consists of all admissible elementary and basic problem types, each of which is defined 
in turn by the underlying epistemological and methodological types of systems, and 
requirement types ..... 

9.6. OVERVIEW OF GSPS ARCHITECTURE 

The key for a successful rebuilding of our environment-which is the architect's 
task-will be our determination to let the human element be the dominating 
factor . ... Architecture needs conviction and leadership. I t cannot be decided upon 

by clients or by Gal/up Pol/s, which would most often only reveal a wish to continue 

what everybody knows best. 

-WALTER GROPIUS 

The purpose of architecture is to identify and properly characterize those functions 
of an artifact under design, be it a building, machine, or expert system, that are necessary 
for achieving a given goal. The choice and characterization of basic functions of the 
GSPS, whose goal is to provide the user with expert's knowledge for dealing with 
systems problems, are discussed on previous pages of this book in various degrees of 
detail. The aim of this section is to present a concise and comprehensive overview of 
these functions. A block diagram in Figure 9.5 is employed for this purpose; the reader is 
advised to use it as a guide when reading the following description. 
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Figure 9.5. A sketch of the GSPS architecture. 

433 

The conceptual framework that is developed in Chapters 2-8 and summarized in 
Section 9.5 is the kernel of the GSPS. It is a language that is used within the GSPS to 
describe recognized types of systems, requirements, and problems. As far as the GSPS 



www.manaraa.com

434 CHAPTER 9: GSPS: ARCHITECTURE, USE, EVOlUTION 

architecture is concerned, it commits only to the epistemological hierarchy of systems 
types, as defined in Section 9.1. The remaining concepts, such as the individual 
requirement types or methodological distinctions of systems, are characterized in the 
GSPS architecture only in general terms. Their specific delineation is a subject of a 
particular GSPS implementation. It is understood that each GSPS implementation is 
based on a specific set of system types, each represented by a combination of certain 
epistemological and methodological features, as well as specific sets of requirement 
types and the resulting problem types; these are referred to as admissible types of 
systems, requirements, and problems (i.e., they are admissible by the given GSPS 
implementation). 

As explained in Section 9.5, meaningful types of systems problems are formed by 
sequences of elementary and basic problem types. The latter are formed, in turn, by 
systems types and requirement types that are compatible in the sense that they can be 
applied to each other. The three main categories that form the GSPS conceptual 
framework-system types, requirement types, and problem types-are thus inter
related. This is indicated in Figure 9.5 by the bidirectional connections between the 
respective blocks. 

The conceptual framework is a linguistic medium in terms of which the user 
communicates with the GSPS proper. The latter consists of an appropriate knowledge 
base, a set of methodological tools, a metamethodological support, and a control unit. 
The user-GSPS communication, which is two-way communication, is facilitated at 
either end by an appropriate interface. Let us call the one at the user's end an external 
interface and the other one an internal interface. 

Two types of the external interface should be recognized, both of which may be 
incorporated in a particular GSPS implementation. One of them is designed to serve a 
sophisticated user, defined as a person who is sufficiently familiar with the GSPS 
conceptual framework (at least at the level described in this book) and with the 
limitations of the GSPS implementation he intends to use. This type of interface is 
based on the assumption that the user does not need any assistance in formulating his 
systems and requirements and, consequently, the only function of the interface is to 
check for possible inconsistencies in the user's formulations. 

The other type of external interface is designed to serve a general user, whose 
knowledge ofthe GSPS conceptual framework is not sufficient. Its function is not only 
to check inconsistencies in user's formulations, but to provide the user with a broader 
assistance in formulating his problem. This means that the external interface must 
include appropriate inquiry procedures for the identification of system and requirement 
types, as well as the identification of particular systems and requirements of given types. 
Such procedures may prove very difficult, if not totally unrealistic, if the user is not 
expected to have any knowledge of the GSPS conceptual framework. It is thus 
envisoned that in any GSPS implementations, at least those available in the near future, 
some minimal knowledge of the GSPS conceptual framework will be required of the 
general user. Such minimal knowledge may be made a standard part of every GSPS 
manual. 
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The mentioned inquiry identification procedures, which are an important part of 
the GSPS external interface, can be developed at various levels, depending on the 
minimal knowledge of the GSPS conceptual framework required of the user. The less 
knowledge is required, the more difficult and less developed the procedures are. At the 
extreme level, where no knowledge is required, the development of successful inquiry 
procedures is a major research challenge. The various issues involved, which are beyond 
the scope of this book, are studied predominantly within the area of artificial 
intelligence. 

The GSPS proper consists of four functional units: a set of methodological tools, 
a knowledge base, a metamethodological support unit, and a control unit. All GSPS 
concepts are represented within the GSPS proper in some standard form that is 
facilitated by the internal interface. It is understood that the knowledge base unit, as 
well as the methodological and metamethodological units, must be equipped with 
appropriate reasoning strategies. 

Methodological tools are packages of methods (and the corresponding computer 
programs) by which some of the admissible problem types can be solved. They are 
divided into general packages and specialized packages. The general packages are 
designed for problem types formulated in terms of the most general methodological 
distinctions available within a given GSPS implementation; the specialized packages are 
designed for all problem types based on any less general methodological distinctions. 

Each methodological tool is a set of methods (and the corresponding computer 
programs) for solving some elementary or basic problem types and a procedure 
(computer program) that specifies the order in which the individual methods are to be 
employed. Methodological tools are thus formed from a common pool of methods 
(programs), available for the admissible elementary and basic problem types, by a 
procedure (a control program) that employs the required methods in appropriate 
sequences. 

The GSPS also incorporates various metamethodological considerations. These 
are handled by the rnetarnethodological support unit. This unit contains information 
about the ordering of all admissible problems by their generality and their meth
odological status. The ordering by generality reflects basically the ordering of 
methodological distinctions of systems and requirements. The methodological status of 
a problem has to do with its solvability, time and space computational demands, and 
characteristics of relevant methodological tools. 

Theoretical unsolvability of a problem is distinguished from unsolvability that is 
solely due to the limitations of the given GSPS implementation. If the problem is 
unsolvable in the latter sense, the GSPS may respond in two ways. First, alternative 
formulations of the problem, which are based on stronger assumptions and are solvable 
by the GSPS, are offered to the user; we say that the methodological support unit 
performs appropriate shifting from the given methodological paradigm to more specific 
paradigms. Second, the knowledge base unit is called upon to provide the user with 
useful information regarding the original problem such as references to relevant 
program libraries, papers, or books. 
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For each particular problem for which a methodological tool is available in the 
given GSPS implementation, the metamethodological support unit should perform an 
adequate analysis of its computational complexity. If the problem turns out to be 
practically intractable, the unit should determine, if possible, alternative formulations of 
the problem (based on stronger assumptions) that are computationally tractable. In 
addition, the unit should det~rmine for each requested problem that can be solved by 
the given GSPS implementation an estimated computing cost and other relevant 
characterizations of the method employed. 

As mentioned previously, the knowledge support unit contains useful information 
regarding those problems that cannot be solved by the GSPS implementation involved. 
In addition, however, it may contain other relevant information regarding systems and 
systems problems. Examples are the various theoretical or experimental laws, 
principles, or rules of thumb of systems science, such as the law of requisite variety or 
the law of requisite hierarchy. 

The user communicates with the units of the GSPS proper either through the 
conceptual framework or by a direct connection between the external interface and the 
internal interface. The former communication is involved in the formulation of 
problems; the latter is associated with the various metamethodological considerations 
and utilization of the knowledge base. 

The necessary coordination of the three described units of the GSPS proper is 
performed by a control unit. It basically makes decisions, according to the user's requests 
and other conditions, about which unit to activate and how. 

9.7. GSPS USE: SOME CASE STUDIES 

God gave us the nuts, but he will not crack them for us. 
-JOHANN WOLFGANG GOETHE 

The aim of this section is to present some additional examples of systems problems 
and describe how the GSPS deals with them. Included are only problems that relate to 
the methods described in this book. The main focus is on case studies that involve more 
than one methodological tool and include aspects that are not sufficiently emphasized in 
previous text. Some of the case studies are adopted from literature; results of these are 
compared with the published results. Other case studies are based on data that were not 
previously published. 

It should be mentioned that the quality of data, which in all instances were 
obtained indirectly from various sources, should not be the issue here. The purpose of 
the case studies is to illustrate the GSPS potential, and not to argue issues that are 
outside the GSPS domain, such as data gathering and interpretation of results. 
Although limited interpretation of some results is suggested, it must be emphasized that 
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this would normally be left to the GSPS users-experts in the areas which the individual 
case studies represent. 

For the sake of simplicity, variables are often represented by their identifiers 
(subscripts) and subsets of variables are separated by slashes in the following examples 
(see, e.g., Figures 9.6b,c). 

Example 9.1. This example deals with experimental data collected in a study 
regarding growth of plants following different treatment. The data were collected for 
960 plum trees (Note 9.1) and involve three binary variables: 

v1-mortality (0, alive; 1, dead); 
v2-time of planting (0, at once; 1, in spring); 
v3-root cutting (0, long; 1, short). 

The data were collected under controlled conditions: 240 plum trees were observed for 
each of the controlled variables V 2 and v3 • The experiment was designed to investigate 
the effect of time of planting and length of cutting on the tree survival. 

Since all variables are binary, there is no possibility of further reducing their 

V, v, V, N(e) f(e) 

c= 0 0 0 156 0.162 

0 0 1 107 0.111 

0 0 84 0.087 

0 1 1 31 0.032 

0 0 84 0,087 

0 133 0.139 
0 1 S6 0.162 

209 0.218 

(a) 

0.0378 

(b) 

DQ 

0.04 
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102 ~ n:r... ~ 2 .-TG--9 9 
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(c) (d) 

Figure 9.6. A summary of Example 9.1 (tree survival). 
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resolution forms. The population is 30 times larger than the number of states of the 
variables; this is quite sufficient for probabilistic analysis. Since the support set is an 
unordered population, the study is restricted to the determination of the behavior 
function and performing reconstructability analysis of it. Frequencies of the individual 
states of the variables and the probability distribution derived from them in terms of 
relative frequencies are given in Figure 9.6a. After all reconstruction hypotheses in f§3 

are evaluated, we obtain the distances specified in Figure 9.6b. Reconstruction 
hypotheses that belong to the solution set are shaded in the figure (including, for the 
sake of completeness, is also the overall system itself).Observe that the reconstruction 
hypotheses 23/1 and 13/2 need not be evaluated because their distances cannot be 
smaller than the largest distances of their predecessors, i.e., they cannot be smaller than 
0.0263. Hence, they are inferior to the hypothesis 12/3, whose actual distance is 0.0134, 
and must be rejected. Block diagrams of members of the solution set and their ordering 
are given in Figure 9.6c. The dependence of the minimum distance on the refinement 
level is plotted in Figure 9.6d. 

We may conclude from the results in Figure 9.6 that the tree survival is affected by 
both time of planting and length of cutting, but time of planting is about twice as 
significant as length of cutting. We can also see that these controlled variables (v2 and v3 ) 

are independent as far as their influence on the tree mortality is concerned. 

Example 9.2. Although this example is only a small variation on Example 9.1 from 
the methodological point of view, the two examples are totally different in their 
semantic and pragmatic aspects. This example deals with experimental data collected 
for 114 90-day-old mice in a study regarding infanticide, which means the killing of 
young of the same species. The experiments concern one category of infanticide-that 
relating to sexual competition between males. They were performed to test the so-called 
sexual-competition hypothesis, based on Darwin's concept of sexual selection, accord
ing to which a male that commits infanticide can increase his reproductive success at the 
expense of competitors by killing a competitor's offspring and then mating with the 
mother. t Variables involved in the experiments are: 

vf"~ominance (0, dominant; 1, subordinate); 
v2-sexual experience (0, naive; 1, experienced); 
v3-attitude to competitor's offsprings (0, infanticide; 1, parental, 2, ignoring). 

As in Example 9.1, we can only determine a behavior function and perform its 
reconstructability analysis. A summary of results, based on probabilistic characteriz
ation of constraint among the variables, is given in Figure 9.7. 

When we disregard the totally different interpretation, the results are very similar 
to those obtained in Example 9.1. We may conclude that the attitude to the young is 

t For more details regarding the study, see Science 25, pp. 1270-1272, 1982. 
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v, v, v, N (c ) f(e) 
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Figure 9.7. A summary of Example 9.2 (infanticide). 

affected by both dominance and sexual experience (hypothesis 13/ 23), but sexual 
experience is almost twice as significant as dominance (compare distances of 23/1 and 
13/2). We can also see that whenever the subsystem 12 is excluded, the distance virtually 
does not change. Hence, dominance and sexual experience are independent of each 
other. 

Example 9.3. This example is based on data that were collected as part of an 
investigation into satisfaction with housing conditions in Copenhagen (Note 9.2). A 
population of 1,681 residents from selected areas living in rented homes built between 
1960 and 1968 were questioned on their satisfaction, the degree of contact with other 
residents, and their feeling of influence on apartment management. At the same time, the 
type of housing of each resident was recorded. Four variables are thus involved: 

vI-housing type (0, tower blocks; 1, apartments; 2, atrium houses; 3, terraced 
houses); 

v2-feeling of influence (0, low; 1, medium; 2, high); 
v3-<legree of contact (0, low; 1, high); 
v4- satisfaction with housing conditions (0, loW; 1, medium; 2, high). 
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Since all 72 states of the variables were observed, we can define a lexicographic ordering 
of the states and represent the data by the sequence offrequencies N(c) that is based on 
this ordering. Assuming that the ordering of variables is VI' V2, V 3, V4 , the lexicographic 
ordering is unique and, hence, the data are uniquely defined by the following sequence 
offrequencies N(c): 21, 21, 28,14,19,37,34,22,36,17,23,40,10,11,36,3,5,23,61,23, 
17, 78,46,43,43,35,40,48,45,86,26,18,54,15,25,62,13,9,10,20,23,20,8,8,12,10,22, 
24, 6, 7, 9, 7, 10, 21, 18, 6, 7, 57, 23, 13, 15, 13, 13, 31, 21, 13, 7, 5, 11, 5, 6, 13. 

As in previous examples, the data are based on an unordered population and, 
consequently, the mask evaluation is meaningless. The population is 23 times larger 
than the number of overall states of the variables. Hence, no coarsening of resolution 
forms of the variables is needed. 

Since this example is methodologically similar to the previous examples, we 
provide the reader with results obtained for two options of reconstructability analysis 
(Table 9.3) and leave their discussion and interpretation to the reader. The two options 
are based on probabilistic and possibilistic behavior functions, respectively. In either 
case, only C-structures are used and, at each level of refinement, only those C-structures 
are refined whose distance is not greater than the minimum distance at that level plus 
20% of the minimum distance. The refined structures are indicated in Table 9.3 by 
asterisks; those with minimum distances are identified by two asterisks. 

Example 9.4. This example describes a simple study of the relationship between 
the political situation and stock market performance in the United States in this 
century. The political situation is characterized by three binary variables: 

VI-party affiliation of the President (0, Democrat; 1, Republican); 
v2-house control (0, Democratic; 1, Republican); 
v3-senate control (0, Democratic; 1, Republican). 

The stock market performance is represented by a single variable: 

V4-stock market (0, down; 1, up). 

These variables are observed in time during the period 1897-1981. The whole period is 
divided into 21 equal intervals associated with the regular presidential period of four 
years. Variables V2 and V3 are determined by the house and senate control, respectively, 
at the beginning of each of the periods. 

It is obvious that the source system represents a highly simplified characterization 
of the attributes of concern. It is used here only to illustrate how the GSPS could be 
utilized for the investigation of systems of this sort. For instance, it may be desirable to 
distinguish more states for variable V4 or to divide the time period involved into 
intervals (not necessarily equal) that are distinguished by changes in the variables 
themselves. Some additional political or economic variables may also be included, such 
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TABLE 9.3 
Summary of Reconstructability Analysis in Example 9.3 (Housing Conditions 

in Copenhagen) 

(a) Probabilistic option (b) Possibilistic option 

Structure Distance Structure Distance" 

134/234 0.0030 134/234 0.0197 
124/234 0.0045 124/234 0.0235 
123/234 0.0069 123/234 0.0312 
124/134 0.0023** 124/134 0.0182* 
123/134 0.0094 123/134 0.0845 
123/124 0.0023** 123/124 0.0162** 

2 13/14/23/24 0.0051 2 13/14/23/24 0.0360* 
124/23 0.0053 124/23 0.0335* 
123/24 0.0077 123/24 0.0408 
124/13 0.0038** 124/13 0.0325** 
123/14 0.0109 123/14 0.0957 
134/24 0.0047 134/24 0.0329* 
124/34 0.0062 124/34 0.0350* 
12/13/24/34 0.0089 12/13/24/34 0.0478 
12/134 om 10 12/134 0.0973 

3 14/13/24 0.0062** 3 14/13/24 0.0487* 
124/3 0.0065" 124/3 0.0454** 
12/13/24 0.0093 12/13/24 0.0585 
12/13/14 0.0124 12/13/14 0.1128 

4 14/24/3 0.0089** 14/24/34 0.0560 

13/24 0.0104* 13/24/34 0.0693 

14/13/2 0.0136 134/2 0.1095 

12/3/24 0.0120 14/23/24 0.0531 * 

12/3/14 0.0151 12/23/24 0.0662 
12/23/14 0.1119 

5 1/24/3 0.0131 ** 12/34/24 0.0660 
14/2/3 0.0163 12/34/14 0.1141 
13/2/4 0.0178 13/23/24 0.0678 

6 1/2/3/4 0.0205** 13/14/23 0.1128 

4 14/3/24 0.0658** 
12/3/24 0.0779* 
12/3/14 0.1237 
13/24 0.0785* 
14/13/2 0.1241 
1/23/24 0.0943 
14/23 0.1296 

5 1/3/24 0.1087** 
14/3/2 0.1427 
12/3/4 0.1492 
13/2/4 0.1530 

6 1/2/3/4 0.1832** 

• Refined structures are indicated by asterisks; those with minimum distances are identified by two asterisks. 
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as a global characterization of the political situation in the states, inflation, unemploy
ment, change in GNP, etc. 

Data representing the described source system are given in Table 9.4. There are 
many different ways in which the GSPS can be used in processing the data and deriving 
systems at higher epistemological levels. The following is one possible scenario. 

First, the user wanted to determine admissible masks for .1M = 2 and both 
probabilistic and possibilistic distinctions. Since he had no special requirements, the 
GSPS provided him with the results in Figure 9.8; they are based on the usual objective 
criteria-the generative uncertainty and mask size-which are employed in the default 
option. The figure is self-contained; the shaded areas in the tables identify sampling 
variables associated with the individual masks. 

We can s~e that both options result in almost the same set of admissible masks, but 
the possibilistic option includes one additional mask for four sampling variables (the 
memoryless one). The user decided tentatively to accept the mask with five variables, but 
he wanted to be sure that there are no better masks with five variables within a larger 
acceptable mask. He thus requested admissible masks for .1M = 3 and I iM I = 5. He 
obtained the same mask as before, which represents sampling variables S2' S3' S5' S7' S8' 

This mask is thus well supported and the user accepted it as a basis for further 
processing. Since only 21 observations are available and there are 32 states of the 
sampling variables, the user decided to perform reconstructability analysis of the 
behavior system based on the chosen mask only for the possibilistic option. Admissible 
reconstruction hypotheses are listed in Table 9.5, where the same notation is used as in 
Example 9.3; the sampling variables are conveniently relabeled as indicated in 
Figure 9.9a. 

When inspecting the dependence of D, on I (Figure 9.9b), it is clear that D, is quite 
small for I :::;; 6 and increases considerably for I > 6. Hence, the structure 12/35/23/24 at 
level 6 emerges as the most informative reconstruction hypothesis, i.e., the most refined 
one in a cluster characterized by small distances. Its block diagram with appropriate 
directions of variables is given in Figure 9.10. Variable 2, which is the only generating 
variable in the overall system, is taken as input variable of the individual subsystems; the 
fact that it is determined by the previous state of variable 5 and not arbitrarily by an 

TABLE 9.4 
Data Matrix in Example 9.4 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

VI 0 0 0 0 0 0 0 0 1 0 0 0 
v2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
V3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
v4 0 0 0 1 0 0 1 0 1 1 1 0 0 0 
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p= -1 0 

s5 sl 

s6 s2 V 
v1 Largest acceptable mask 

v2 

57 53 

s8 s4 

l iM I iH (GIG) 

8 1.42 
iH (Glc;) 

3 

7 1.42 
2 

6 1.56 

0 
5 1.77 4 5 6 7 8 l iMI 

4 2.43 

Probabilistic behavior function 

l iM I iU(GIG) 

8 .4 
'U(GIG) 

7 .4 1.5 

6 .53 
.5 

5 .72 
0 

4 5 6 7 8 l iMI 
4 1.27 

Possibilistic behavior function 

Figure 9.8. Mask evaluation in Example 9.4 for M = 2 (stock market and U.S. Federal 
Government). 

environment is indicated by the block denoted as DELAY through which the two 
variables are connected. Directions of the remaining variables then become unique. 

Several interpreted global conclusions can be derived from the admissible 
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2 

3 
4 
5 
6 
7 

8 
9 

10 

TABLE 9.S 
Admissible Reconstruction Hypotheses 

in Example 9.4 Based on the Mask 
Specified in Figure 9.9a 

Structure D, 

1234/ 1345 0.0 
123/ 1345 0.0097 
123/135/ 124/ 145 
1234/ 135 
123/ 135/ 124 0.0138 
123/ 124/ 35 0.0277 
124/35/23 0.0333 
12/ 35/ 23/ 24 0.0579 
1/ 35/ 23/ 24 0.1667 
12/35/23/4 
1/35/ 23/4 0.2805 
1/23/4/ 5 0.4138 
1/2/ 3/4 0.5610 

reconstruction hypotheses in Table 9.5 and, particularly, from the key hypothesis in 
Figure 9.10: 

i. senate control is strongly related to stock market performance at the same time 
period (observe that variables 2 and 3 belong to the same subsystem in all 
admissible hypotheses except the last one); 

ii. stock market performance during one time interval strongly determines senate 
control during the next interval (variables 3 and 5 become disconned only at 
refinement level 9); 

iii. senate control is the most important variable in the investigated system 
(variable 2 is involved in three subsystems of the key reconstruction 

p= -1 0 
D {! 

.6 

Y1 ..- President .5 
.4 

v2 4 -.- House .3 
.2 

v3 2 5 .-- Senate .1 
0 

v4 3 -.- Stock market 0 1 2 3 4 5 6 7 8 9 10 Q 

(a) (b) 

Figure 9.9. Illustration to Table 9.5 (Example 9.4). 
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2 If 2 3 2f 

4 0 0 1 0 0 .75 
r---- 0 1 .25 0 

I 2 0 .5 0 .25 
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I 2 4 3f 3 5 
I 3 

I 0 0 1 0 0 
I 0 1 .5 0 1 
I 0 .25 0 
I 
I 
L _______ 

5 

Figure 9.10. Key reconstruction hypothesis in Example 9.4 (stock market and U.S. Federal 
Governmen t). 

hypothesis): it is related, with the same degree of significance (compare 
admissible hypotheses at levels 6 and 7), to the President's party affiliation 
during the same time interval and house control during the next interval. 

More specific interpreted conclusions can be derived from the possibility 
distributions of the subsystems of the key hypothesis in Figure 9.10 and, possibly, from 
the overall system reconstructed from the key hypothesis (employing the various 
reconstruction characteristics discussed in Sections 4.9 and 4.10), which the GSPS 
would make available upon request. We leave these more specific interpretations of the 
results to the interested reader. 

Example 9.5. This example describes a segment of a typical interaction between 
an ecologist and the GSPS. It illustrates a possible use of the GSPS in dealing with a 
combination of ecological and climatological data. The data involve Oneida Lake, the 
largest lake wholly within New York State (33.6 km long and 8.8 km wide on the 
average). The following ten variables are considered: 

vI-total zooplankton biomass (ng/l); 
v2-total phytoplankton biomass (ng/I); 
v3-<:hlorophyll a (ng/l); 

4f 

.75 

.5 
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v4-nitrate nitrogen (ng/l); 
vs-soluble reactive silicon (ng/l); 
v6-soluble reactive phosphorus (ng/I); 
v7-water temperature (0C); 
vB-solar radiation (langleys/day); 
v9-precipitation, water equivalent (in.jday); 
vlO-wind, average speed (milesjh). 

When consulting the GSPS, the ecologist has a 10 x 193 data matrix that represents 
states of these variables observed daily for 193 days during the period from April 12, 
1977 through October 21, 1977 (see Note 9.3). 

Since the variables were measured with a rather high precision, but only 193 
observations are available, resolution forms of the variables must be coarsened 
drastically to make it possible to derive meaningful results from the data. From the 
various options, the ecologist decides to use the criterion of equal frequency (a 
partitioning into equally populated blocks). He also decides to reduce the state set of 
each of the variables except V9 into three states and to reduce the state set of V9 into two 
states. Based on these decisions, the GSPS determines the resolution forms specified in 
Table 9.6 and employs these forms to convert the original data into their new form. 
These new data (a 10 x 193 matrix of integers), which are the basis for further 
processing, are not given here to save space. 

It is clear that even after the drastic coarsening of the resolution forms, the number 
of observations is still too small when compared with the number of all overall states 
defined for the variables (204 times less). Hence, the ecologist decides to use solely the 
possibilistic option, which is considerably less demanding on data size, and to explore 
some meaningful subsets of the variables. 

Variables 

VI (zooplankton) 
V2 (phytoplankton) 
V3 (chlorophyll) 
V4 (nitrogen) 
Vs (silicon) 
V6 (phosphorus) 
V7 (temperature) 
V8 (solar radiation) 
V9 (precipitation) 
VlO (wind) 

TABLE 9.6 
Resolution Forms in Example 9.5 (Oneida Lake) 

o 

[1.5-147.7) 
[202.3-2170.4) 
[1.3-8.3) 
[0.0-54.5) 
[25.0-337.7) 
[1.4-2.1) 
[2.2-15.2) 
[0.0-221.2) 
[0.0] 
[3.7-7.6) 

State identifiers 

[147.7-215.2) 
[2170.4-5122.6) 
[8.3-12.7) 
[54.5-253.8) 
[337.7-605.6) 
[2.1-4.4) 
[15.2-20.2) 
[221.2-442.3) 
[0.0-1.75] 
[7.6-10.2) 

2 

[215.2-338.9] 
[5122.6-14963.2] 
[12.7-27.5] 
[253.8-543.8] 
[605.6-1364.9] 
[4.4-24.0] 
[20.2-23.4] 
[442.3-663.5] 

[10.2-18.6] 
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TABLE 9.7 
Admissible Reconstruction Hypotheses Based 

on Variables VI-V6 of Example 9.5 
(Oneida Lake) 

Structure D, 

I 12345/12356 0.0021 
2 12345/1356 0.0049 
3 1345/1356/1235 0.0098 
4 1356/1235/345 0.0242 
5 1356/123/345 0.0386 
6 136/123/345/356 0.0544 

447 

First, reconstruction properties of a system containing only variables V 1-V6 are 
determined. Admissible reconstruction hypotheses at refinement levels 1-6 are listed in 
the usual form in Table 9.7; distances of those at higher refinement levels are 
unacceptably large according to criteria specified by the ecologist. A block diagram of 
the most refined admissible hypothesis, which we may refer to as hypothesis SF, is given 
in Figure 9.11. 

A number of interpreted results can be derived from the solution set in Table 9.7. 
One of them is the significance of variable 3 (chlorophyll), which is strongly interrelated 
with all the other variables. Hypothesis SF (Figure 9.11) can also be used as a guideline 
for choosing appropriate subsets of variables for further, more specific studies. Since 
variable 1 (zooplankton) is of primary interest in this investigation, the ecologist decides 
to exclude variables 4 and 5, which are not directly related to variable 1 in SF, from 
further studies. In addition, he excludes variable 2 (phytoplankton) on the grounds that 
it is well represented by variable 3 (chlorophyll); this is due to a strong relationship 
between the two variables as well as their ecological meaning. The remaining variables 
are 1,3,6. 

To investigate variables 1, 3, 6 more thoroughly, the ecologist requests the 
determination of all admissible masks with three generating sampling variables that are 

2 4 

phytopl. nitrogen 

3 

chlorophyl 

Figure 9.1 I. Key reconstruction hypothesis SF based on variables V I -V6 and memoryless mask 
in Example 9.5 (Oneida Lake). 
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p= -5 -4 -3 -2 -1 0 p= -5 -4 -3 -2 -1 0 

zooplankton ~ v1 

chl orophyl l --.. v3 (a) 

phosphorus -+- v6 

M2 

Figure 9.12. Admissible masks in Example 9.5 (Oneida Lake). 

defined within the largest acceptable mask with AM = 6. This request results in two 
admissible masks, MJ and M 2 , which are specified in Figure 9.12. When reconstruct
ability analysis is applied to behavior systems derived from the data for these masks, the 
admissible reconstruction hypotheses listed in Table 9.8 are obtained. Refinements 
beyond level 10 are not included since the distance is not acceptable according to the 
ecologist's criteria. Observe that identifiers 1-6 of sampling variables have different 
meanings in the two masks. 

Table 9.8 is a rich source of interpreted conclusions, including those regarding 
directions of variables, but they may involve other than systems considerations and, 
hence, I omit them here. I describe, however, one additional interaction between the 
ecologist and GSPS. The ecologist decides to supplement the three ecological 
variables-vI (zooplankton), V3 (Shlorophyll), V6 (phosphorus}--with four climatological 

TABLE 9.8 
Admissible Reconstruction Hypotheses Based on Masks M I and M 2 in 

Example 9.5: Oneida Lake (see Figure 9.12). 

Mask M, Mask M 2 

Structure D, Structure D, 

I 13456/23456 0.0006 1 12346/ 12356 0.0003 
2 1356/23456 0.00 19 2 1246/ 1356/2346/2356 0.0010 
3 1356/2456, 3456 0.0032 3 1356/2346, 2356 0.0017 
4 156, 2456/3456 0.0094 4 1356, 234, 2356 0.0033 
5 156/2456/346 0.0 137 5 1356, 2356, 34 0.0046 
6 156, 2456/ 34 0.0159 6 1356/256/ 34 0.0087 
7 156/245/34,256 0.0232 7 1356, 25, 34 0.014 
8 15, 245, 34/256 0.0339 8 156, 25, 34/ 356 0.0231 
9 15, 245, 34, 26 0.040 1 9 16/25, 34/356 0.0341 

10 15,24, 34, 26, 25 0.0549 10 16, 25, 34/36/ 56 0.0542 
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7 (temperature) 

1 (zooplankton) 
3 (chlorophyl) 
8 (radiation) 
10 (wind) 

449 

9 

(precipitation) 

Figure 9.13. The most refined admissible reconstruction hypothesis for variables 1, 3, 6, 7, 8, 9, 10 
and memoryless mask in Example 9.5 (Oneida Lake). 

variables-v7 (water temperature), va (solar radiation), V9 (precipitation), VIO 

(wind)-and perform reconstructability analysis on the behavior system based on 
these seven variables and memoryless mask. A block diagram of the most refined 
reconstruction hypothesis is shown in Figure 9.13. Among possible interpreted 
results, it is particularly interesting for the ecologist that variable 10 (wind) has 
the same significance as variable 8 (solar radiation). This seems to be a 
consequence of the morphological fact that Oneida Lake is unusually shallow. 

The ecologist may now use the GSPS to further study the central variables 1, 3, 8, 
10 in the last successful hypothesis (Figure 9.13), but the previous description seems 
sufficient to illustrate the role of the GSPS in the active and creative process of scientific 
inquiry. 

Example 9.6. A case study, in which one of the existing implementations of the 
GSPS was applied to open heart surgery, is outlined in this example (Note 9.4). The 
following six physiological variables, which are monitored at intervals of 30 sec (i.e., at 
time instances 0, 30 sec, 60 sec, 90 sec, ... ) on a patient during an open heart surgery, 
form the source system of interest: 

v1-systolic blood pressure (SBP); 
v2-tnean blood pressure (MBP); 
v3-central venous pressure (CVP); 
v4---cardiac output (CO); 
vs-heart rate (HR); 
v6-left atrial pressure (LAP). 
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Five states are defined for each variable; they are labeled 1, 2, 3, 4, 5. State 3 represents 
the range of appearances of the corresponding attribute that is medically established as 
normal. States 1 and 5 represent critical ranges, which require that appropriate actions 
be taken immediately to induce desirable changes or, else, the patient would die. States 2 
and 4 are undesirable (dangerous), but not critical. The aim of this study is to determine 
reconstruction properties of the system whose knowledge would help the anesthesiol
ogist to properly deal with undesirable states of the variables during the surgery. 

A probabilistic behavior function associated with this case study and based on the 
mask defined in Figure 9.14a is given in Table 9.9. It characterizes an average male 
patient, about 45 years old, and was derived from data collected during 100 successful 
operations. Observe that (i) the normal overall state, in which all variables are in state 3, 
is by far the most probable state, and (ii) some undesirable states do not occur for some 
variables at all (e.g., states 1,2, and 5 of variable vd for this category of patients. It is 
likely that different behavior functions would be obtained for different categories of 
patients (female patients, different ages, etc.). The mask for which the behavior function 
is defined was determined by the GSPS as the best mask in the following sense: it is the 
only mask, within AM = 2 and with six sampling variables, that results in the most 
deterministic ST -system. The ST -function, which is of considerable interest to the 
anesthesiologist, was also determined by the GSPS, but it is not given here due to its 
large size (a 27 x 27 matrix or a list with 729 entries). 

The GSPS can be used in many other ways to process the data. As an illustration, 
let a particular option of reconstructability analysis be applied to the behavior function 
in Table 9.9. The option is characterized by the following requirements: 

• analyze C-structures first and, then, analyze G-structures in the r-equivalence 
classes of the most refined admissible C-structures; 

• largest acceptable increase in distance between refinement levels of C-structures 
is 0.016; 

p= -1 0 

5 v1 ........ systolic blood pressure 

6 v2 _ mean blood pressure 

1 _central venous pressure 

2 _cardiac output 

3 _heart rate 

4 _left atrial pressure 

(a) 
S6 (MBP) 

(b) 

s4 (LAP) 

s5 (SBP) 

Figure 9.14. The most refined admissible G-structure in Example 9.6 (open heart surgery). 
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TABLE 9.9 
Behavior Function in Example 9.6 (Open Heart Surgery) 

51 52 53 54 55 56 ftc) 

c=3 1 3 3 4 5 0.005 
3 2 3 1 3 3 0.025 
3 2 3 3 3 3 0.171 
3 2 3 3 3 4 0.005 
3 2 3 3 3 5 0.005 
3 2 3 3 4 3 0.005 
3 2 3 3 4 4 0.005 
3 2 3 3 4 5 0.005 
3 2 3 3 5 5 0.030 
3 2 3 4 3 3 0.010 
3 2 5 3 4 5 0.005 
3 3 3 1 3 3 0.005 
3 3 3 3 3 3 0.442 
3 3 3 3 3 4 0.015 
3 3 3 3 3 5 0.005 
3 3 3 3 4 3 0.025 
3 3 3 3 4 4 0.005 
3 3 3 3 4 5 0.010 
3 3 3 3 5 5 0.025 
3 3 3 4 3 3 0.035 
4 2 3 3 3 3 0.025 
4 3 3 3 3 3 0.101 
4 3 3 3 3 4 0.005 
4 3 3 3 3 5 0.005 
4 3 3 3 4 4 0.010 
4 3 3 3 4 5 0.010 
4 3 3 3 5 5 0.005 

• G-structures in the analyzed r-equivalence classes are acceptable only if their 
distance is the same as the distance of the corresponding C-structure; 

• the city-block (Hamming) distance is required; 
• Il = 0.0001 for the iterative join procedure. 

According to these requirements, admissible C-structures at the individual levels of 
refinement are listed in Table 9.l0a. The only admissible G-structure is 1234/26/36/46/5; 
its best predecessors in the analyzed r-equivalence class are listed in Table 9. lOb and its 
block diagram is shown in Figure 9.14b. This structure should be of considerable help to 
the anesthesiologist. For example, it indicates that the systolic blood pressure is highly 
independent of the other variables, particularly heart rate and mean blood pressure (see 
Table 9.lOa for I = 1, 2) and that no more than four of the six variables have to be 
considered simultaneously. Although a number of additional interpreted results can be 
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TABLE 9.10 
Admissible Reconstruction Hypotheses of the Behavior Function in Table 9.9 

(Example 9.6)-Open Heart Surgery 

(a) C-structures (b) G-structures 

Structure D, Structure D, 

12346/12456 0.0 I 1234/236/246/346/5 0.0127 
12345/12346 0.0 2 1234/236/346/5 0.0127 
12346/1245 0.0 3 1234/346/26/5 0.0127 
12346/145 0.005 4 1234/26/36/46/5 0.0127 
12346/15 0.0089 
12346/5 0.0099 
1234/2346/5 0.0127 

derived from the resulting structure system, it is better to leave further interpretation to 
the appropriate medical experts. 

Example 9.7. This example illustrates the use of the GSPS in archaeology. It 
describes a small part of a large study performed during the period 1978-1980 (Note 
9.5). The object of study is Brown Knoll, a prehistoric settlement in East-Central New 
York State. The settlement is atop a large gravel knoll jutting out from the valley wall in 
Colliersville, as the juncture of the Susquehanna River and Schenevus Creek. From 
previous archaeological work done at the site, it is known that Brown Knoll consists of a 
number of loci representing the material remains of various kinds of activities of 
prehistoric hunter-gatherers-stone toolmaking, bone and woodworking, nut gather
ing, fire and house building, etc.-ranging over a span of time from approximately 3,000 
B.c. to 500 B.c. The site itself is not commonly excavated by archaeologists because it 
lacks vertical stratigraphy within its soil, which is necessary to separate the various 
prehistoric occupations in time. It has also been partly disturbed by plowing in recent 
times. 

In excavating the site, two kinds of units were used: (i) 1,068 shovel test pits (30 em 
in diameter, to a depth of 30 em-the maximum depth of archaeological material in this 
case), spaced 5 m apart; and (ii) 291 larger excavation units (1 x 1 m square). The shovel 
test pits were used to locate high artifact concentrations, which were then excavated in 
the larger, square units. The set of space locations of the individual excavation units 
(either test pits or squares) represents the support set in this example. Although the 
regular distribution of test pits in space can be employed for exploring spatial 
relationship by analyzing a set of masks, this example is restricted to memory less masks. 

Four attributes are defined by the number of artifacts found at the individual 
excavation units in each of the following four categories of waste material: decortifi-
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cation flakes, blocks, shatter, and flakes. Two to five states are distinguished for each of 
the corresponding variables. They were determined by the GSPS on the basis of the 
equal frequency requirement. Examples of two sets of the resulting resolution forms are 
specified in Table 9.11. Several other sets of resolution forms, all based on the frequency 
requirement, were determined in the original study and reconstructability analysis of 
the corresponding memory less behavior systems performed for each of them. It was 
found that these changes in resolution forms of the variables involved had little effect on 
the solution set. This fact makes the admissible reconstruction hypotheses well 
supported. 

In this example, only set II of resolution forms (defined in Table 9.11) is considered. 
It is applied to three related data sets that are based on 

• unplowed shovel test pits; 
• plowed shovel test pits; 
• all shovel test pits in the site. 

Probabilistic behavior functions derived from these three data sets, which are denoted 
11'/2, and/3 , respectively, are specified in Table 9.12. Admissible sets of reconstruction 
hypotheses (based only on C-structures) for each of them are listed in Table 9.13; the 
corresponding dependencies of DI on I are shown in Figure 9.15. 

TABLE 9.11 
Examples of Two Sets of Resolution Forms in Example 9.7 

(Archaeological Excavations) 

Set I 

Variables 

VI (decor!. flakes) 
v2 (blocks) 
V3 (shatter) 
V4 (flakes) 

Set II 

Variables 

VI (decor!. flakes) 
V2 (blocks) 
V3 (shatter) 
V4 (flakes) 

0 

0 
0 
0 

0--2 

0 

0 
0,1 
0 
0 

State identifiers 

2 3 

1,2 ~3 

1,2 ~3 

1,2 ~3 

3-8 9-14 ~ 15 

State identifiers 

2 3 

~1 

~2 

~1 

1 2 3,4 

4 

~5 
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TABLE 9.12 
Probabilistic Behavior Functions in Example 9.7 

(Archaeological Excavations) 

VI v2 V3 V4 fde) f2(e) f3(e) 

e=O 0 0 0 0.628 0.211 0.437 
0 0 0 1 0.103 0.137 0.119 
0 0 0 2 0.050 0.114 0.081 
0 0 0 3 0.042 0.123 0.079 
0 0 0 4 0.056 0.142 0.095 
0 0 0 0.012 0.016 0.014 
0 0 1 0 0.014 0.007 
0 0 2 0.004 0.010 0.007 
0 0 1 3 0.002 0.012 0.007 
0 0 1 4 0.010 0.027 0.Ql8 
0 1 0 0 0.004 0.012 0.008 
0 1 0 1 0.005 0.006 0.006 
0 0 2 0.002 0.010 0.006 
0 0 3 0.004 0.014 0.009 
0 0 4 0.016 0.020 0.018 
0 0 0.002 0.004 0.003 
0 1 0 0 0 
0 2 0 0.004 0.002 
0 3 0 0 0 
0 1 1 4 0.004 0.008 0.006 

0 0 0 0.002 0.023 0.011 
0 0 0.007 0.012 0.009 
0 0 2 0.004 0.008 0.006 
0 0 3 0.005 0.025 0.014 
0 0 4 0.016 0.027 0.020 
0 0 0.002 0.002 0.002 
0 1 0.004 0.002 0.003 
0 2 0.002 0 0.001 
0 3 0 0.008 0.004 
0 1 4 0.009 0 0.005 

0 0 0 0 0 
0 1 0.002 0 0.001 
0 2 0 0.002 0.001 
0 3 0 0 0 
0 4 0.007 0.002 0.005 
1 0 0 0 0 
1 1 0 0 0 

2 0 0 0 
3 0 0 0 
4 0.002 0.002 0.002 
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TABLE 9.13 
Admissible Sets of Reconstruction Hypotheses in 

Example 9.7 (Archaeological Excavations) 

(a) Unplowed shovel test pits (/1) 

1 134/234 0.0006 (b), (e) 
2 134/24 0.0016 neither 
3 14/24/34 0.0059 (e) 
4 14/24/3 0.0126 (b), (e) 
5 24/1/3 0.0286 (b) 
6 1/2/3/4 0.0400 (b), (e) 

(b) Plowed shovel test pits (/2) 

1 134/234 0.0023 (a), (e) 
2 13/234 0.0039 neither 
3 1/234 0.0058 neither 
4 14/24/3 0.0075 (a), (e) 
5 24/1/3 0.0095 (a) 
6 1/2/3/4 0.0120 (a), (e) 

(e) All shovel test pits (/3) 

1 134/234 0.0007 (a), (b) 
2 14/234 0.0019 neither 
3 14/24/34 0.0036 (a) 
4 14/24/3 0.0077 (a), (b) 
5 14/2/3 0.0140 neither 
6 1/2/3/4 0.0208 (a), (b) 

Example 9.S. This example is based on a source system defined by one of my 
assistants, Michael Pittarelli, according to the instructions in Exercise 2.7. He defined 
the following five variables on himself, each of which recognizes four states (low-{), 
medium-I, high-2, very high-3}: 

v c--energy level; 
v2-amount of protein consumed; 
v3-amount of simple carbohydrate consumed; 
v4-amount of exercise; 
vs-amount of sleep (previous night). 
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.03 

.02 all 

.01 

o Figure 9.15. A summary of reconstructability analysis in 
o 1 2 3 4 5 6 ~ Example 9.7 (archaeological excavations). 

Each morning, the states of variables V 1-V4 are recorded for the previous day, and the 
state of variable Vs is recorded for the current day. The following is a sample of data 
collected for the initial period of 50 days: 

V 1. t = 21101101022112221021022121021212212133321012222102 
v2 . t = 22113110121022321102111211211021212221311011121212 
v3 . t = 21111312211231110133311222322221132201232323121331 
v4 . t = 30100102023002010021022010002013001202030011101200 
vS . t = 01211222133132200221223331321301003211001121120011 

When the data are analyzed with the aim of determining admissible behavior 
systems for ~M = 2 and the usual requirement (uncertainty, complexity), the set of 
admissible masks is the same for both possibilistic and probabilistic options. They are 
specified in Figure 9.16a, where the sampling variables have the same meaning as 
defined in Figure 9.16b. The dependence of the two kinds of generative uncertainties on 
mask size is depicted graphically in Figure 9.16c. Reconstructability analysis can now be 
performed for behavior systems based on some of these admissible masks. As an 
illustration, it is described here only for the mask with six sampling variables (i = 6, 
Figure 9.l7a), possibilistic option (the number of observations is not sufficient for 
probabilistic analysis), and C-structures. The dependence of D[ on I for this mask is 
shown in Figure 9.17b. We can see that the refinement levels are naturally clustered into 
1= 1, 2, 3 and the rest. For the first three levels, the admissible reconstruction 
hypotheses are unique: 

13456/23456 
1345/2345/1456/2456 
1345/1456/2456 

(/ = 1), 
(I = 2), 

(l = 3). 

Each of these hypotheses is also well discriminated (by the information distance) from 
competing hypotheses at the same refinement level. For I ~ 4, on the contrary, large 
clusters of admissible reconstruction hypotheses occur at each level. Hence, the 
hypothesis 1345/1456/2456 emerges clearly as the most informative one. Its block 
diagram is shown in Figure 9.17c. 
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l iMI iU (GIG) iH (G IG) 

10 o 119 0.307 

9 0.218 0.531 

8 0.453 1.037 

7 1.128 2.234 

6 1.868 3.685 

5 3.143 5.168 

(a) 

p= -1 0 

56 1 

57 52 
>- H (GIG) !:: 
z 

S8 53 =M 
<l: 
f0-
e.: 
w 

59 54 U 
Z 
::::l 

510 55 

5 6 7 8 9 10 liMI 

(b) (c) 

Figure 9.16. Admissible masks within the largest acceptable mask M in Example 9.8 (self
observation). 

To express the effect of variables 1,2,4, and 5 upon variables 3 and 6, which is of 
primary interest in the investigated system, appropriate directions must be introduced 
for the variables. Variable 6 is determined either from 2f or 3f (but not both). This 
dilemma can be resolved by determining the generative uncertainties of both these 
alternatives and selecting the one with smaller uncertainty. One of the two functions ef 
or 3f) is then of no use, and the corresponding subsystem can be excluded. Another 
possibility of resolving the dilemma associated with the control of variable 6 is to 
combine subsystems 1456 and 2456 into one larger subsystem 12456, as illustrated in 
Figure 9.8d. 

The source system defined in this example (or its variations) can also be studied 
from the standpoint of a metasystem. In such a case, data would be partitioned 
according to periods characterized by special features such as special diets, excessive 
exercise (before and during athletic competitions), and the like. Each characteristic 
subset of data would be analyzed independently of the other subsets, and the resulting 
behavior or structure systems would then be integrated into one metasystem by an 
appropriate replacement procedure. 
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p= -1 0 

Vl - energy 1 3 

2 - pro te in 

4 - ca rboh ydra te 

5 - exerc ise 

6 Vs - sleep 

() I 2 3 4 5 G 7 8 9 10 II 12 13 14 15 

(a) (b) 

,- .... --- 3 , 
fOELA0 l':_I_:...:..J 

2 ~ _ __ _ 1 

(e) (d) 

Figure 9.17. Illustration to reconstructability analysis in Example 9.8 (self-observation). 

Example 9.9. Consider a simple switching circuit consisting of two elements 
representing logic functions AND and OR that are connected as shown in Figure 9.1Sa. 
For all states of the input variables VI' V2 , V3 , V4 , the output variables V s , V6 can assume 
states specified in Figure 9.1Sb. Due to states a and b, indicated in the figure, the system 
is clearly non-deterministic. It has a memory ability. When VI = V2 = 1 and V3 = V4 = 0, 
the actual state of the output variables Vs and V6 contains information about the last 
change of the input variables. For example, if the last change involved only variables VI 

and V2 , then Vs = V6 = 0; if it involved only variables V3 and V4 , then Vs = V6 = 1. 
Assume now that, due to some defect in the couplings of the system, state a does not 

occur anymore, but everything else remains the same. Assume further that we have no 
direct access to the system to identify the defect. Then, one way of identifying it 
indirectly is to analyze reconstruction properties of the new behavior system (the one 
without state a) in the neighborhood of the structure representing the correct system 
given in Figure 9.lSa. When considering all states listed in Figure 9.lSb except a as 
possible states of the system and the remaining ones as its impossible states, and after 
analyzing (in the possibilistic fashion) C-refinements of the correct structure 1256/3456, 
we obtain two structures with zero distance: 125/3456/156 and 125/3456/256. When 
further refining both of them, we find that only 125/3456 has zero distance. Refining it 
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(a) (b) 
v1 v2 v3 v4 

v, v2 V3 v. Vs v. 

,- - - ---- --I 0 0 0 0 0 0 
I 
I I 0 0 0 0 

1 I 0 0 0 0 

I 1 0 0 1 0 1 , I 0 0 0 0 0 

I 0 0 1 0 
I 
L __ I 0 0 0 ._----- ---

Vs v6 
0 1 1 0 

0 0 0 0 0 

0 0 1 0 

v, v2 
(e) 

v3 v4 0 0 0 

0 1 0 

a= 0 0 0 0 
----- b= 0 0 

0 

I 0 , 
I 
I 
I L __ 

Figure 9.18. Identification of a coupling defect (Example 9.9). 

further, we find that none of its immediate refinements has zero distance. Structure 
125/3456 represents thus the new system; its block diagram is shown in Figure 9.18c. 
The defect is now obvious: variable V6 was decoupled from the AND element. 

The RC-procedure was sufficient in this case since we expected changes in the 
couplings, but no disintegration of the elements. The user could also have employed the 
GSPS in an interactive mode and requested the evaluation of only those structures that 
correspond to coupling defects, such as structures 1256/346, 125/3456, 256/3456, 
156/3456, etc. 

I must add that this example does not take into account the way in which the system 
is physically implemented. Each particular implementation may have some additional 
properties that must be considered. Nevertheless, the GSPS can always be used in 
assisting the user with this kind of problems. 

Example 9.10. Hardware monitoring, as one approach to computer performance 
evaluation, is briefly introduced in Example 3.8. An alternative use of the GSPS in this 
application area is illustrated here by describing a particular case study. 

It was observed that the CPU utilization of a computer system had periodically 
dropped from almost 100% to 80% or less for periods of about 20 min on average. 
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Hardware monitoring of nine carefully chosen variables of the computer system was 
arranged in order to find conditions which contribute to this peculiar performance. 

The monitoring was done in a time period during which one of the drops in the 
CPU utilization occurred. The total period of monitoring was 49 min long, with a time 
resolution level of 30 sec. That means that 98 observations were made. In each of the 
observations, percentages of activities of all the monitored units during the respective 
interval of 30 sec were recorded. The GSPS was then used to convert these raw data into 
data based on Boolean variables. States of these new variables were required to 
discriminate between "high" and "low" activities of the corresponding computer units 
on the basis of their average utilizations determined from the raw data. All the Boolean 
variables Vj (i E N 9) were defined in the same way as 

V. = {O, 
I 1, 

if the utilization is less than average aj 

otherwise. 

The following list describes the assignment between the variables and computer units, 
and specifies for each variable Vi the average utilization a j : 

VI-CPU (a l = 90%); 
v2-supervisor (a 2 = 43 %); 
v3-problem activity (a 3 = 45 %); 
v4 -<.:hannel 1 (a4 = 10%); 
vs-<.:hannel3 (as = 10%); 
v6-<.:hannel 5 (a6 = 10%); 
v7-unit 160, connected to CPU through chtlnnel 1 (a 7 = 3 %); 
vs-unit 162, connected to CPU through channell (as = 56 %); 
v9-unit 163, connected to CPU through channell (a 9 = 44 %). 

The determination of the values aj (i EN 9) from the raw data was the first use of the 
GSPS in this study. Its second use was the transformation of the raw data into the 
Boolean form. Since the data matrix is rather large (9 x 98), it is not reproduced here. 

The Boolean data were then processed by the GSPS for the memory less mask and a 
probabilistic behavior function was determined. The reconstruction properties of the 
function were then analyzed for such C-structures which do not require the use of the 
iterative join procedure. The city-block (Hamming) distance was requested by the user. 
All admissible reconstruction hypotheses for the given requirements are listed in 
Table 9.14; the dependence of the distance on the refinement level is illustrated 
graphically in Figure 9.19. By following the refinement path summarized in the table, 
the computer analyst can determine which projections of the overall behavior function 
are significant, to which degree, and where in the refinement lattice are they located. His 
overall aim is to utilize this information for developing strategies through which to 
minimize underutilization of the computer system. 
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TABLE 9.14 
Admissible Reconstruction Hypotheses in Example 

9.10 Computer Performance Evaluation 

Structure iiI.l 

12345678/12346789 0.0000 
12345678/12456789 0.0000 
12345678/13456789 0.0000 
12456789/23456789 0.0000 

2 12345678/1246789 0.0000 
12345678/1346789 0.0000 
2345678/12456789 0.0000 
12345678/1456789 0.0000 

3 12345678/146789 0.0000 
4 12345678/14789 0.00825 
5 12345678/1789 0.01515 
6 1235678/1245678/1789 0.02025 
7 235678/1245678/1789 0.02026 
8 235678/1245678/179 0.02715 
9 235678/1245678/19 0.0391 

10 234678/125678/245678/19 0.0501 
11 235678/12567/245678/19 0.0551 
12 235678/12567/24578/19 0.06655 
13 235678/1257/24578/19 0.08285 
14 235678/1257/2478/19 0.09945 
15 235678/1257/478/19 0.1113 
16 235678/1257/47/19 0.12215 
17 23578/25678/1257/47/19 0.1469 
18 23578/2567/1257/47/19 0.1594 
19 23578/267/1257/47/19 0.16855 
20 23578/26/1257/47/19 0.17775 
21 23578/26/1257/4/19 0.1923 
22 23578/26/127/4/19 0.20675 
23 2357/3578/26/127/4/19 0.21265 
24 2357/578/26/127/4/19 0.24105 
25 235/578/26/127/4/19 0.2707 
26 235/578/6/127/4/19 0.2883 
27 235/57/78/6/127/4/19 0.31105 
28 235/78/6/127/4/19 0.34045 
29 23/35/78/6/127/4/19 0.34355 
30 23/35/78/6/127/4/9 0.3507 
31 23/35/78/6/17/27/4/9 0.36715 
32 23/5/78/6/17/27/4/9 0.3723 
33 3/4/5/6/78/17/27/9 0.39955 
34 3/4/5/6/8/9/17/27 0.41165 
35 2/3/4/5/6/8/9/17 0.4209 
36 1/2/3/4/5/6/7/8/9 0.66085 
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Figure 9.19. Distance versus refinement level in Example 9.10 (computer performance 
evaluation). 

Example 9.11. Numerous functions have been proposed to evaluate offensive 
performance is baseball, each defined in terms of several variables that characterize 
offensive actions of individual players. Ten of these functions, referred to as offensive 
performance estimators, are defined in the paper "An evaluation of major league 
baseball offensive performance models" by J. M. Bennett and 1. A. Flueck (The 
American Statistician, February 1983, pp.76-81). Data consisting of five of these 
estimators are given in this paper for 33 leading players in both National League and 
American League; the estimators are called batting average (BA), slugging percentage 
(SP), offensive average (OA), offensive performance average (OPA), and expected run 
production average (ERPA). 

One way of evaluating these estimators and determining their relative significance 
is to perform reconstructability analysis of the data. The data system consists of five 
variables (the five estimators), one support (the population of 33 leading baseball 
players), and 5 x 33 data matrix, which is not reproduced here. Before performing 
reconstructability analysis, the user decided to coarsen resolution forms of the variables 
by the equal frequency option to three states for each variable. The result is shown in 
Table 9.15a. The data were then sampled and a possibilistic behavior function based on 
Eq. (3.33) determined. Finally, admissible reconstruction hypotheses were determined 
within the set C6'5; they are listed in Table 9.15b. Variables are denoted by integers and 
have the following meaning: 1-BA; 2-SP; 3-DA; 4-OPA; 5-ERPA. The increase 
in distance (loss ofinformation) with increasing refinement is shown in Figure 9.20. It is 
clear that the rate of change is small for I ::;; 6 and increases drastically for 1 > 6. Hence, 
the most informative reconstruction hypothesis is the one at level 6: 14/24/34/45. This 
clearly indicates that variable 4 (OPA) represents the most significant performance 
estimator since each of the other estimators is directly derivable from it. Additional 
conclusions can be obtained by inspecting the whole set of admissible reconstruction 
hypotheses. 
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TABLE 9.15 
Illustration to Example 9.11 (Baseball) 

(a) Resolution forms 

Batting average (BA): 
0-[0,0.277); 1-(0.277, 0.307); 2-[0.307, 0.8] 

Slugging percentage (SP): 
0-[0, 0.443); 1-[0.443, 0.461); 2-[0.461, 0.8] 

Offensive average (OA): 
0-[0,0.515); 1-[0.515,0.533); 2-[0.533, 0.8] 

Offensive performance average (OPA): 
0-[0,0.472); 1-[0.472,0.491); 2-[0.491, 0.8] 

Expected run production average (ERPA): 
0-[0, 0.147); 1-[0.147, 0.16); 2-[0.16, 0.8]. 

(b) Admissible reconstruction hypotheses 

Structure Distance 

1 1234/1345 0.0069 
2 1234/145 0.0221 
3 1234/45 0.0357 
4 123/234/45 0.0580 
5 124/34/45 0.0771 
6 14/24/34/45 0.1030 
7 1/24/34/45 0.1778 
8 1/2/34/45 0.2777 
9 1/2/3/45 0.3975 

10 1/2/3/4/5 0.5309 

2 

Fig. 9.20. Distance versus refinement level in Example 9.11 (baseball). 

463 
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9.8. GSPS EVOLUTION 

As our ability to solve problems expands, the scale of the problems attacked 
themselves seem to expand at a similar rate. As a result there always exist over the 
horizon new categories of problems of greater size to tackle. 

-DAVID M. HIMMELBAU 

According to current terminology, the GSPS is an expert system. Brian Gaines and 
Mildred Shaw give an excellent characterization of expert systems t: 

Expert systems on larger computers allow the recorded mind of an expert, or the 
composite "mind" of many, to guide others less skilled in complex tasks. In using 
them you are discussing with a "colleague" problems of medical diagnosis or oil 
exploration, or the inventive processes of mathematical discovery. You tell them 
your problem and the information you have. You discuss it with them, query their 
judgement and ultimately come to a decision based on a collaboration with someone 
who may be long dead. 

Computer technology affects the core of our being because conversation is at 
the heart of human civilization. We are a species remarkable for our adaptive and 
learning capabilities, the effect of which is immensely amplified by our capability for 
conversation. Only one person need learn from experience. Others can be told and 
media allow the telling to transcend space and time. New media do change our world 
and the computer provides the first one for encoding not just a conversation but the 
capability to converse itself, not just a picture but the capability to be in the world 
portrayed. 

According to John Sowa, "an expert system is a knowledge-based system that 
incorporates enough knowledge to reach expert levels of performance" [SO 1]. While 
most expert systems described in the literature are designed to provide the user with the 
expertise in a traditional discipline (such as a specific subject area of medicine or law), 
the role of the GSPS is to assist the user in dealing with systems problems. Its expertise is 
thus systems knowledge and methodology, and, consequently, its utility transcends 
boundaries between the traditional disciplines. 

When compared with expert systems of another kind, those which aim at solving 
problems in general (general problem solvers), the GSPS is restricted by focusing solely 
on systems aspects of problems. This restriction is intentional and reflects my 
philosophical view that a man--<.:omputer symbiosis represents the best arrangement for 
dealing with problems in general, and that the problems for which the computer 
symbiont has the best potential for being well utilized are precisely those recognizable as 
systems problems. The aim of the GSPS is to make most of this potential. 

tNature, 30, April 28, 1983, p. 772. 
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One of the main characteristics of the GSPS architecture, which is not sufficiently 
emphasized in the previous text, is its evolutionary nature. To explain this aspect 
properly, I must first make it clear that the GSPS conceptual framework as well as its 
knowledge and methodological bases have not developed in isolation from the various 
traditional disciplines. In fact, the traditional disciplines were viewed as the only 
indigenous source of systems ideas from which the GSPS architecture should emerge. 

Virtually all traditional disciplines have been involved, in one way or another, with 
systems problems of certain types and, consequently, have developed some methods for 
dealing with these problems. Although some of the disciplines have been more 
successful in this respect than others, each of them has been advancing the systems 
knowledge and methodology within its own context-dependent boundaries and with 
virtually no contribution to other disciplines. 

I must emphasize that, to a large extent, the GSPS conceptual framework, as 
described in this book, has evolved (in the course of many years, say two decades or so) 
by the processes of distilling the notions of systems and associated problems from many 
distinct disciplines, abstracting them from their narrow contexts, categorizing them, 
and, finally, integrating them into a coherent whole. Although the current framework is 
rather stable, these processes are still on-going and may contribute to further extensions 
and other evolutionary changes in the framework in the future. Similar processes have 
also been involved in the evolution of the GSPS knowledge base and its methodological 
and metamethodological bases. 

This gathering of systems concepts, methods, and knowledge from the various 
traditional disciplines is obviously only a part of the overall process by which the GSPS 
architecture has been evolving. In fact, it has been only a basis for the actual research on 
the GSPS, whose aim has been to make the conceptual framework as complete as 
possible by identifying and filling gaps in it, and to advance the knowledge and 
methodological bases in a comprehensive way, particularly in important problem areas 
that are not adequately developed. 

One additional aspect of the evolutionary nature of the GSPS architecture is quite 
important it is required that the GSPS be adaptive to the needs of its users. This means, 
in practical terms, that the GSPS is expected to keep records of all user-GSPS 
interactions and this information is then utilized to guide further research on the GSPS. 
Records of unsuccessful interactions are particularly important for this purpose, since 
they may indicate specific weaknesses in the user-GSPS interface, methodologically 
underdeveloped problem types, or even the need for extending the conceptual 
framework. 

The outlined processes by which the GSPS architecture has been evolving are 
summarized by the diagram in Figure 9.21. Numbers attached to the individual 
connections in the diagram have the following meaning: 

i-processes of distilling, abstracting, categorizing, and integrating relevant 
concepts, knowledge, and methods from the traditional disciplines; 

2-four areas of research on the GSPS; 
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Figure 9.21. A summary of evolution of the GSPS architecture. 

3-information about the user-GSPS interactions that is utilized in guiding the 
research on the GSPS. 

Since the environment within which the GSPS has evolved-the traditional disciplines 
and the GSPS users who represent these disciplines-has been playing a crucial role in 
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this evolution, it seems appropriate to characterize the GSPS architecture as an 
indigenous architecture. 

Let me end this section and this book by an appropriate quote: 

Completeness without completion is useful. 
Fulfillment without being fulfilled is desirable. 

NOTES 

9.1. Example 9.1 is often discussed in statistical literature. For instance, it is included in the 

book by Bishop et al. [BI1, p. 87], where information regarding the original source of data is 
given. 

9.2. Example 9.3 is analyzed by statistical techniques in the book Applied Statistics by D. R. 
Cox and E. 1. Snell (Chapman and Hall, New York, 1981, p. 155), where information regarding the 
original source of data is given. 

9.3. Example 9.5 is adopted from the Ph.D. dissertation by Masahiko Higaihi at SUNY
Binghamton [HI 1]. The ecological data were collected by the Cornell University Biological Field 

Station; the climatological data were taken from Local Climatological Data (Syracuse, New York, 
1977), published by the U.S. Department of Commerce. Further details regarding the data can be 

found in the original source [HIl]. 

9.4. The case study outlined in Example 9.6 is described in a paper by H. J. 1. Uyttenhove 

[UY3].1t was performed at the Academic Hospital of Leiden University in co-operation with the 
Technical University of Eindhoven in the Netherlands in 1979. The processing was done on 

SAPS, which is a small software system designed in the spirit of the GSPS [UY2]. 

9.5. Example 9.7 is based on a small part of a workshop project performed by J. C. Wanser 
on the GSPS at SUNY-Binghamton during the period 1978-1980. The whole project is 
summarized in a report "Systems Modelling of an Archaeological Site" (Systems Science 
Department, SUNY-Binghamton, New York, 1980). Although the information distance is 

employed in Example 9.7, the original project was performed in terms of the city-block distance. 

9.6. The method of converting data collected on a computer system by a hardware monitor 
into their Boolean form, which is used in Example 9.10, was proposed by Robert Orchard of Bell 
Laboratories. He also provided me with the data and problem statement of the example. 

9.7. A good overview of expert systems, including useful bibliographical and historical 
remarks, was prepared by Weiss and Kulikowski [WE4]. 

9.S. The closing quote of this book is from Tao Te Ching by Lao Tsu. 

EXERCISES 

9.1. Derive formula (9.1). 

9.2. Considering only the essential methodological distinctions listed in Table 9.2, determine the 
total number of types of systems that are based on one support and three variables provided 

they are: 
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(a) source systems; 
(b) data systems; 
(c) generative systems; 
(d) structure generative systems. 

9.3. Repeat Exercise 9.2 for 
(a) two supports and four variables; 
(b) one support and n variables; 
(c) two supports and n variables. 

9.4. Decide for each type of subproblems involved in reconstructability analysis whether it is a 
problem of the first kind or second kind. 

9.S. Considering only systems in which all variables are of the same methodological type and, 
also, all supports are of the same methodological type, determine the number of all 
admissible types of systems when epistemological types specified in Figure 9.1 and types of 
methodological distinctions listed in Table 9.1 are admissible. 

9.6. Extend the epistemological hierarchy in Figure 9.1 for I = 3. 
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APPENDIX A 

LIST OF SYMBOLS 

GENERAL SYMBOLS 

{x, y, ... } set of elements x, y, ... 
{xlp(x)} set determined by property P 
(Xl> X2' ••• , Xn) n-tuple 
[x;,J matrix 
[a, b] closed interval of real numbers 
[a, b) interval of real numbers closed in a and open in b 
[a,oo) set of real numbers greater than or equal to a 
x E X set membership 
X = Y set equality 
X =1= Y set inequality 
X - Y set difference 
Xs;;Y 
XeY 
o 
&,(X) 

IXI 
X ('\ Y 
XvY 
XxY 
x 2 

x ...... Y 
fog 

f·g 

r l 

[f~X] 
f 

X/f: 

< 
s 
:S 
-< 
xl\y 

xVy 

xly 

set inclusion 
proper set inclusion (X =1= Y) 

empty set 
power set (set of subsets) of X 
cardinality of set X 
set intersections 
set union 
Cartesian product of sets X and Y 
Cartesian product X x X 
function from X into Y 

composition of functions f and g 

join of functions or relations f and g 

inverse of function f 
projection of behavior function with respect to variables in set X 
equivalence relation associated with function f 
set of equivalence classes (or a partition) of set X based on equivalence 

relation £: 
less than 
either less than or equal to or partial ordering 
epistemological ordering of systems 
substate relation 
meet (greatest lower bound) in a lattice 
join (least upper bound) in a lattice 
x given y 
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X=:> y 

X=y 
V 
3 

I 
n 
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x implies y 
x if and only if y 
for all 
there exists at least one 
sum 
product 

max(x l , X 2 ,· .. , xn) maximum of XI' X 2 , ... , Xn 

min (Xl' X 2 , •.. , xn) minimum of Xl' X 2 , ... , Xn 

iff if and only if 
N set of positive integers 

c 
C 

Cx. y' ex. y 

C6 n 

d,~ 
d,d 

D,fi 
SD, sf> 

D 

ei 

e 
e 
E 
E 
,g 

fB, JB 

foB, JGB 
fs, Js 
fGs, JGS 
FB, FB 

FGB , FGB 

Fs, Fs 

set of nonnegative integers 
set {l, 2, .. . ,n} 
set {n,n+1, ... ,m} 
set of all real numbers 
n factorial [= n(n -1) ... 1] 

combinatorial number n!/(n -r)!r! 

SPECIAL SYMBOLS 

attribute and its set of appearances 
backdrop and its set of instances 
I-cut function-Eq. (3.53) 
overall state of a system (c E C) 

set of all overall states of a system 
neutral or directed coupling between elements x and y of a structure system 

Eqs. (4.5), (4.8) 
set of all C-structures with n variables 
crisp or fuzzy data-Eqs. (2.21), (2.27) 
crisp data matrix and fuzzy data array 
neutral or directed data system-Eqs. (2.22), (2.2~) 
neutral or directed data system with semantics-Eqs. (2.23), (2.25) 
information distance-Eqs. (4.40), (4.42) 
exemplification of general variable vi-Eq. (2.4) 
overall state of input variables 
overall state of all variables of a system except input variables 
set of all input states of a system 
set of all overall states of a system that do not involve input variables 
overall exemplification channel-Eq. (2.14) 
neutral or directed behavior function-Eqs. (3.18), (3.26) 
neutral or directed generative behavior function-Eqs. (3.22), (3.29) 

neutral or directed ST-function-Eqs. (3.74), (3.90) 
neutral or directed generative ST-function-Eqs. (3.75), (3.91) 
neutral or directed behavior system-Eqs. (3.10), (3.27) 
neutral or directed generative behavior system-Eqs. (3.15), (3.30) 
neutral or directed ST-system-Eqs. (3.77), (3.93) 
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F Gs, fGS 

:FSF 

g,g 
G,G 
'§. 

H 
I, I 
t,i 
Lf 

.!l'v 

.!l'vi 

M 
M j 

MG 
t!.M 
M+ 

MX 
N(c) 

Oi,Oi 

0,0 
0,0 
[p. 

r 

u 

U 

Vi,V i 

V;,~ 
Vj 

Wj' Wj 

Wj' Wj 
w 
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neutral or directed generative ST-system-Eqs. (3.78), (3.94) 
reconstruction family of structure system SF 
state of generated or generating sampling variables 
set of all overall states of generated or generating sampling variables 
set of all G-structures with n variables 
Shannon entropy-Eq. (3.37) 
general or specific neutral image system-Eqs. (2.11), (2.12) 
general or specific directed image system-Eqs. (2.17), (2.18) 
level set of possibility distribution f-Eq. (3.55) 
lattice of variables (V-lattice) 
resolution lattice 
inask-Eq. (3.5) 
submask associated with variable vj-Eq. (3.8) 
generative mask-Eq. (3.11) 
depth of mask M 
extended mask 
metasystem based on systems of type X 
frequency (number of observations) of state c 
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crisp and fuzzy observation channels of variable vj-Eq. (2.2) and (2.8) or (2.9) 
neutral or directed object system-Eqs. (2.1), (2.16) 
crisp or fuzzy overall observation channel-Eq. (2.13) 
set of all P-structures with n variables 
replacement function of a metasystem-Eq. (5.2) 
translation rule-Eq. (3.1) 
set of translation rules 
sampling variable-Eq. (3.3), and its state set 
neutral or directed source system-Eqs. (2.15), (2.19) 
structure system based on systems of type X 
input/output identifier 
V-uncertainty (possibilistic measure of uncertainty/information)-Eq. (3.56) 
general or specific variable 
general or specific state set of variable Vj, Vj' respectively 
overall state set of variable vj(i EN.) 
general or specific support 
general or specific support set of Wj' Wj' respectively 
overall support set 
exemplification of general support wj-Eq. (2.5) 
crisp and fuzzy support observation channel of bj-Eqs. (2.3), (2.10) 
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GLOSSARY OF RELEVANT 
MATHEMATICAL TERMS 

The purpose of this glossary is to define those mathematical terms for which some 
readers are expected to have the need for brief reminders. The glossary is, of course, not 
sufficient for learning the corresponding concepts. It should be adequate, however, for 
refreshing one's memory of mathematical subjects that have been mastered at some 
point. Readers with insufficient mathematical background, who may have difficulties in 
comprehending some of the definitions, are advised to consult any of the following 
books: 

Bavel, Z., Math Companion for Computer Science, Reston, Virginia, 1982. 
Korfhage, R. R., Discrete Computational Structures, Academic Press, New York, 1974. 
Levy, L. S., Discrete Structures of Computer Science, Wiley, New York, 1980. 
Preparata, F. P., and R. T. Yeh, Introduction to Discrete Structures for Computer Science and 

Engineering, Addison-Wesley, Reading, MA, 1973. 
Stanat, D. F., and D. F. McAllister, Discrete Mathematics in Computer Science, Prentice-Hall, 

Englewood Cliffs, NJ, 1977. 

For mathematical concepts in the relatively new area of fuzzy sets, the following 
book is recommended: 

Dubois, D., and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, 
New York, 1980. 

GLOSSARY 

Algebraic structure is a tuple 

(X, y, ... , R1 , Rz, ... , a, b, ... ) 

whose elements are drawn from among sets X, Y, ... ,relations R 1 , Rz, ... , some of 
which may be functions or operations defined on various Cartesian products of the sets, 
and distinguished members a, b, ... of the sets. 

Antisymmetric relation is a binary relation R on set X such that (x, y) E Rand 
(y, X)E R implies x = y. 

Binary relation R on set X is a subset of the Cartesian product X x X. Formally, 
RcXxX. 

475 



www.manaraa.com

476 APPENDIX B: GLOSSARY 

Cartesian product X 1 X X 2 X ••. x X n is the set of all ordered n-tuples such that 
the first element in each n-tuple is a member of X I, the second element is a member of 
X 2 , etc. Formally, 

Xl x X 2 X .•. X Xn = {(XI' x 2 , ••• , xn)lx l EXI , X2 EX2 , .•• , X.EX.}. 
Alternative name: set product. 

Compatibility relation on set X is a relation that is reflexive and symmetric. 
Alternative name: tolerance relation. 

Composition of two binary relations (or functions) R c: X x Yand S c: Yx Z is a 
binary relation R ° S c: X x Z that consists of all pairs (x, z) such that (x, y) E Rand 
(Y,Z)ES for some YEY. Formally, 

R ° S = {(x, z)l(x, Y)ER and (y, Z)ES for some yE Y}. 
Connected relation is a binary relation R on X such that x =1= Y implies either 

(x, Y)ER or (y, X)ER. 

Distance defined on set X is a function d: X x X + R such that 

i. d(x, y) ~ 0; 
ii. d(x, y) = d(y, x) = 0 itT x = y; 

iii. d(x, z) ::; d(x, y) + d(y, z). 

Equivalence relation is a binary relation that is relexive, symmetric, and transitive. 

Function J: X -+ Y is a subset of X x Y such that (x, Y)EJ and (x, Z)EJ implies 
y = z. Alternative names: correspondence, map, mapping. 

Fuzzy set X defined within a crisp universal set U is the set of ordered pairs 
X = {(u, mAu»luE U}, where mAul is the grade of membership of u in X. 

Grapb G is a pair (X, R), where X is a nonempty set and R is a binary relation on X. 
Elements of X are called vertices and elements of R are called edges of the graph. When 
R is a symmetric relation, G is called an undirected graph. 

Group is an algebraic structure (X, 0, e), where X is a nonempty set, ° is an 
associative binary operation, and e is an identity element of X that possesses the 
following properties: 

i. eGa = a; 

11. a o e = a; 
iii. for each x E X there exists X-I E X such that x ° x - I = e. Element X-I is called 

an inverse of x. 

Homomorpbism from an algebraic structure (X, R) into another algebraic 
structure (Y, S) is a function h: X -+ Y such that (XI' X2 )ER implies (h(xd, h(X2 »ES. 
When function h is such that (XI' X2 )ER itT (h(x l ), h(X2 »ES, the homomorphism is 
called strong. 

Hypergrapb H is a pair (X, S), where X is a finite set and S is a family of nonempty 
subsets of X whose union is set X. Formally, H = (X, S), where X is a finite set and 
S = {SdSi =1= 0 and u i Si = X for iEl}. 

Inverse R -1 of a binary relation (or a function) R is obtained by reversing each of 
the pairs on R. Formally, R- 1 = {(x,y)I(y,X)ER}. 
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Isomorphism between algebraic structures (X, R) and (Y, R) is a one-to-one 
correspondence h: X ..... Y such that 

(Xl' Xl)ER iff (h(x l ), h(Xl»ES. 

Join (or least upper bound) of a subset Y of a partially ordered set X is an element X 

of X such that X is an upper bound of Y and x :::;; y for every upper bound y of Y. 

Join of two binary relations (or functions) ReX x Y and S c Yx Z is a ternary 
relation R * SeX x Y x Z that consists of all triples (x, y, z) such that (x, y) E Rand 
(y, Z)ES. Formally, R * S = {(x, y, z)l(x, Y)ER and (y, Z)ES}. 

Lattice is a partially ordered set each of which subsets has a meet and join. 

Lexicographic ordering on set X = X 1 X Xl X .•. xX. with a linear ordering 

:::;; i defined on each set Xi(i EN.) is a partial ordering on X such that (Xl' Xl' ... , x.) 

:::;; (Yl'Yl'" ·,Y.) iffxk :::;;iYk for the smallest integer k such that Xk =1= Yk' 

Linear ordering is a partial ordering that is connected. Alternative names: total 
ordering, simple ordering, complete ordering. 

Lower bound of a subset Y of a partially ordered set X is an element x of X such 
that x :::;; Y for all yE Y. 

Meet (or greatest lower bound) of a subset Y of a partially ordered set X is an 
element x of X such that x is a lower bound of Y and Y :::;; x for every lower bound of Y. 

Metric distance defined on set X is a function d: X x X -+ IR such that 
i. d(x, y) ~ 0; 

ii. d(x, y) = d(y, x); 
iii. d(x, y) = 0 iff x = y; 
iv. d(x, z):::;; d(x, y)+d(y, z). 

Alternative name: metric. 

One-to-one correspondence between sets X and Y is an onto function f: X -+ Y 
such that x =1= y implies f(x) =1= f(y). Alternative name: bijection. 

Onto function f: X -+ Y is a function such that yE Y implies (x, y) Ef for at least 
one x E X. Alternative names: epic function, surjection. 

Operation is a function 0: X· -+ X. When n = 1,2, ... , it is called unary 
operation, binary operation, etc., respectively. 

Partially ordered set is a set with a partial ordering defined on it. Alternative name: 
poset. 

Partial ordering is a binary relation on a set that is reflexive, antisymmetric, and 
transi tive. 

Partition n(X) of a set X is a family of non-empty subsets of X such that each 
element of X belongs to exactly one of these subsets. Formally, 

n(X) = {XiIXiE~(X),Xi =1= 0, uXi = X, and Xi nXj = 0 for all i,jEJ}. 
i E 1 

Power set of set X is the set of all subsets of X. 

Quasiordering is a binary relation on a set that is reflexive and transitive. 
Alternative name: preordering. 
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Reflexive relation is a binary relation R on set X such that (x, x) E R for all x E X. 

Symmetric relation is a binary relation R on set X such that (x, y) E R implies 
(y, X)ER. 

Transitive closure RTof a binary relation R on a set is the smallest relation that is 
transitive and contains R (i.e., R CRT). 

Transitive relation is a binary relation R on set X such that (x, y) E Rand (y, z) E R 
implies (x, z) E R. 

Upper bound of a subset Y of a partially ordered set X is an element x of X such 
that y'::; x for all yE Y. 
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SOME RELEVANT THEOREMS 

The purpose of this appendix is to state some theorems that are relevant to various 
subject areas covered in this book and give their proofs. Although these theorems 
and proofs are not necessary for general understanding of the subject areas, their 
comprehension should result in much deeper understanding of the material. 

The theorems are presented in three sections, each devoted to one subject area. 
When desirable, the theorems are supplemented by appropriate definitions, lemmas, 
and connecting remarks. 

C.l. MEASURE OF UNCERTAINTY BASED ON POSSIBILITY 
DISTRIBUTIONS • 

Let n fF denote the set of possibility distributions with at least one nonzero element 
that can be defined on any finite set with n elements and let 

fF = U nfF. 
neN 

Let B(Nn ) denote the set of all permutations on N n • For each 

and for each be B(N n), let 

Definition l. A possibility distribution f= (Pl,P2' ... ,Pn)enfF is called a 
normalized possibility distribution if and only if 

max Pi = 1. 
i 

* This material is related primarily to Section 3.5; it is adopted from one of my papers [HI2]. 
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Definition 2. Given a possibility distribution 

(= (PI' P2' ... , P.), 
let 

wherepj = PbU) forsomepermutationbEB(N.)suchthatpj ~ Pk whenj < k(j, kENn)· 
Then, t is called an ordered possibility distribution of f. 

Definition 3. Given a possibility distribution (and a permutation bEB(N.), if 
1 = b[f], then b is called an ordering permutation of f. 

Definition 4. For each f= (PI,P2' ... ,P.)Eff' and each IE [0, IJ, let 

e: ff' x 0, 1 --> £:¥l (N.) 

be a function such that 

e(f, I) = {iEN.lpi ~ I}. 

This function is called an I-cut function and the set e(f, I) is called an I-cut of f. 

Defintion 5. Let f= (PI,P2' ... ,P.)Eff'. Then, 

L f = {/1(3 iEN.)(Pi = I) or 1= O} 

is called a level set of f. 

Definition 6. For every n E I\J, let 

and 

be two possibility distributions. Then, If is called a subdistribution of 2f if and only if 

let If ~ 2f be used to indicate that If is a subdistribution of 2(. 

Theorem 1. Function U defined by (3.56) or, alternatively, (3.57) possesses all of 
the following properties: 

(VI) U(PI' P2, ... , P.) = U(Pb(I)' Pb(2)' ... , Pb(n)) for all possibility distributions 
fEff' and all permutations bEB(N.) (symmetry); 
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(V2) U(PI' P2' ... , Pn' 0) = U(PI' P2' ... , Pn) for all f E.? (expansibility); 
(V3) U(f) ~ Uef) + Uef), where f = (PI!> PI2'···, Pin, P21' P22' ... ' 

P2n ... , Pml, Pm2'···' Pmn), If = ePI' Ip2 ,· .. , IPm)E.'F such that 
IPi = maXjPij, and 
2f = e PI' 2 P2' ... , 2 Pn) E.'F such that 2 Pj = maxi Pij (subadditivity); 

(V4)U(f)=Uef)+Uef) if If and 2f in (V3) are noninteractive, i.e., 
Pij = minCpi' 2pj) for all iENm and alijENn (additivity); 

(V5) U(I, 1) = 1 (normalization); 
(V6) U is continuous in all its arguments (continuity); 
(V7) Uef) ~ Uef) ifIf ~ 2fand maxi I Pi = maxi 2Pi for all If, 2f En.'F and each 

particular n E N (general monotonicity); 
(V8) for all f E.?, U (f) = 0 iff Pi =1= 0 for exactly one i E N n (minimum property); 
(V9) for all fE.'F, U(f) attains its maximum within n.? iff Pi has the same 

value for all iENn; the maximum of U(f) within nF is equal to 
U(1, 1, ... , 1) = log2 n (maximum property); 

(VI0) for all f E.'F, U(f) decreases if U(f) =1= 0 and only one maximum element off, 
say element Pio such that Pio = maxi Pi' increases (special monotonicity). 

Proof (i) (V 1) and (V7): Let us consider, for any n E N, If, 2f En.'F such that 

for all IE [0, 1]. 

Then, clearly, 

for all/E[O, 1] 

and, consequently, U (If) ~ U ef). Hence, U satisfies (V7) and, by Lemma 2 (p. 490), it 
also satisfies (VI) and (V7). 

(ii) (V2): Let f=(PI>P2, ... ,Pn)E.'F and f'=(PI,P2, ... ,Pn,0)E'? Then, 
L f = L f' and c(f, I) = c(f', I) for alII =1= 0, but c(f, 0) is not included in formula (3.56). 
Hence, U satisfies (V2). 

(iii) (V3): Let f, If, and 2f be defined as in (V3). Since for each IE [0,1] 

and 

we get 

Pij ~ I implies I Pi = max Pij ~ I 
j 

2pj = max Pij ~ I, 
i 

c(f, I) = {(i,j)ENm x NnlPij ~ I} 

£; {(i,j)ENm x Nnllpi ~ I and 2pj ~ I} 

= {iENmllpi ~ I} x {jENnl2pj ~ I} 

= cef, I) x cef, I). 
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Hence, 

le(f, 1)1 ~ leef, 1)1 x leef, 1)1 for all IE [0, 1]. 

By definition, 

If = ~a,x Pij = m~x (m~x pij) = m~x IPi 
I, J I J I 

= llf· 

Similarly, If = 12f . Hence, 

1 ill U(f) = I log2Ie(f, 1)1 dl 
f 0 

This concludes the proof that U satisfies (U3). 
(iv) (U4): Let f, If and 2f be defined as in (U4). Then, clearly, Pij ~ I <:> I Pi ~ I and 

2pj ~ I for all IE [0, 1]. Hence, as in (iii), we get e(f, I) = eef, I) x eef, I) and, 
consequently, le(f, 1)1 = leef, 1)1 x leef, 1)1 for alII E [0, 1]. Following the scheme of 
reasoning in (iii), we can show that If = Ilf= 12f and, eventually, U(f) = Uef)+ Uef). 
Therefore, U satisfies (U4). 

(v) (U5): U(I, 1) = log2 2 = 1. 

(vi) (U6): Let f= (Pl>P2, ... , Pn)EF, let a.ENn be a particular integer, and let 
L f = {II, 12 , ••• , I,}, where ° = 11 < 12 < ... < 1,( = If). For the sake of clarity, let us 
distinguish three cases. 

Case 1. Assume P« = Ip for some {J such that 2 ~ {J ~ r-1. 
(A) Let ~I denote a real number such that ° < ~I < Ip + I -Ip and let 

f = (p;, p;, ... , p;) denote a possibility distribution such that P; = Pi for all i =1= a. and 
p~ = p«+ai. Then, for all/E[O,I], we get 

e(f', I)-{oc} = {iENnlp; ~ I} -{a.} 

= {i E N n I i =1= a., P; ~ I} 

= {iENnli =1= a.,Pi ~ I} 
= {iENnlpi ~ I} -{a.} 

= e(f, I) - {a.} 
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For 1;£ P., we also get 1;£ p~ (since p~ ~ P.) and, consequently, both ocEc(f, I) and 
OCEC(f', I); hence, c(f', I) = c(f, I). For P. < 1;£ p.+i1/(= p~), it is clear that oc¢c(f, I) 
and ocEc(f',/); hence, Ic(f',/)1 = Ic(f,/)I+l. For l>p.+i1I, both oc¢c(f,/) and 
oc¢c(f',/): hence, again, c(f', l) = c(f, I). We may conclude now that 

U(f') _ U (f) = _ [I0g2 (lc(f, 1)1 + 1) -log2Ic(f, 1)I]dl, 1 fP,+t.l 
If p, 

where c(f, I) = c(f, Ip) for aIl/E[p.,p.+M] (since Ip = P. and p.+i11 < Ip+d. 
Hence, 

U(f') - U(f) = ~[Iog2(1c(f, Ip)1 + 1) -log2Ic(f, Ip)I]AI 
If 

_ ~ Ic(f, 1/1)1 + 1 i11 (*) 
- If log2 Ic(f,lp)l . 

Since 

1 I Ic(f, 1/1)1 + 1 
T; og2 -I c-( r=-, I-o-p )-1-

is a constant, equation (*)implies that U is continuous at ffrom the right with respect to 

its argument P •. 
(B) Let Ip- 1 -Ip < M < 0, and let f' be defined in the same way as in (A). Then, 

following the same reasoning used in (A), we obtain 

U(f') - U(f) = ~ log2 Ic(f, //1-1)1 i11, 
If Ic(f,lp_dl- 1 

which implies that U is continuous from the left with respect to P •. 

From (A) and (B), we conclude that U is continuous with respect to P •. 
Case II. Assume P. = Ir • 

(**) 

(A) Set Ir < 1. First, let 0 < i11 < 1 -Ir. Following the same reasoning used in 
Case I(A), we get 

whereC = J~log2Ic(f, l)ldl and I; are constant. Hence, U is continuous from the right. 
Next, let Ir -Ir _ 1 < i11 < O. Suppose I c(f, Ir) I = 1. Then, by the same reasoning used in 
the first part of this case [i.e., Case II(A)], we get 

C' 
IU(f')-U(f)1 ~ Irlr- 1 

1i1/1 
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where, C' = J~-110g2Ic(f, 1)Idi and 1,1'-1 are constant. Hence, U is continuous from 
the left. If Ic(f, 1,)1 =1= 1, then all the arguments in Case I(B) are valid, and we get (**), 
which implies that U is continuous from the left. Hence, U is continuous with respect 

to PIZ' 
(B) Set I, = 1. All the arguments in the second part of (A) are valid and, thus, U is 

continuous from the left with respect to PIZ' 
Case III. Assume PIZ = II = O. Then, all arguments in Case I(A) are valid and U is 

thus continuous from the right with respect to PIZ' 
It follows from Cases I, II, III that U is continuous for any f E IF with respect to any 

of its arguments 

(vii) (U8): Let f = (PI' P2' ... , Pn)EIF and let L f = {II' 12, ... , I,}. Then, by the 
definition of U, we get 

U(f) = O~ Ic(f, 12 )1 = 1 and r = 2 

~Pi =1= 0 for exactly one iENn· 

Hence, U satisfies (U8). 
(viii) (U9): Let nEN, f= (PI,P2"'" Pn) and Lf = {i1,12"'" I, = If}. Since 

Ic(f, li+ dl ~ n for all iEN,_t, we get 

1 ,-I 

= T, log2 n i~t (li+ I -I;) 

= log2 n. 

Hence, U(f) ~ log2 n, where the equality holds ifand only ifr = 2 and Ic(f, 12 ) 1= n, i.e., 
if and only if Pi = 12 for some constant 12 > 0 and all i E N n' We can thus conclude that 
U satisfies (U9). 

(ix) (UIO): Let us consider f = (PI' P2' ... , Pn)EIF such that U(f) =1= O. 
Let If = {iENnlpi ~ Pj for all jENn}. Since U(f) =1= 0, it follows from (vii) that 

l{iENnlpi > O}I ~ 2 and, consequently, Pi > 0 for all iElf · 

Let AElf . Consider!" = (pi,p~, ... , p!)EIF such that 

).{ = Pi' for i =1= ie, 
Pi r" > Pi' lor I = A.. 

Then, clearly, 

(f).I)={C(f,I), for O~I~PA' 
C, {I. }, for P). ~ I ~ pi. 
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Hence, 

1 IP; 
U(fA) =;: log leW', 1)ldl 

PA 0 

Since 

1 [ rp, fpj ] 
= p1 Jo log le(fA, Oldl + p, log le(fA, 1)ldl 

1 [IP' fpj ] =;: log le(fA, Oldl + (log l)dl 
P A 0 p, 

1 
= ;:[PAU(f)] 

PA 

= P~ U(f). 
P;. 

and U (f) =1= 0, 

we get UW') < U(f), which proves that U satisfies (UlO). 
The theorem is proved by (iHvix). Q.E.D. 

Lemma 1. Let If, 2f En 3'7 and let lee f, I) I, leef, I) I denote the cardinalities of I-cuts 

of If, 2f, respectively. Then, 

('v'IE[O, l])I[eef, 1)1 ~ leef, 1)1] 

¢>lf~2f 

[j bEB(NnlJef ~ b[2f]) 

(1) 

(2) 

(3) 

Proof Let Jf = (lPI' }P2' ... , Jpn ), let }f = e PI'} P2' ... , }Pn), and let }f = }b [if], 
where j = 1, 2. 

(i) Proof of (1) => (2). Assume (1). Let Ii = IPi for each i E Nn • Since 

Ipl = IpAk 2 IpA. = I. 
b(k) - L I 

for all k ~ ii 

we get 

Thus, I eef, Ii) I ~ i and, from (1), we get I eef, l;) I ~ i for all i E N n. This, together with 
2 p 2b(k) ~ 2 P 2b(j) for j > k, implies 
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Thus, 2p2b(k) ~ Ii for all k ~ i. Hence, 2Pi = 2P2b(j) ~ Ii = IPi for all iEN •. This, by 
Definition 6, implies 2f ~ Ii 

(ii) Proof of (2) => (3). Assume (2). Then, since jf = jb[if] (j = 1,2), we get 
2b[2f] ~ Ib[lf] and, clearly, 

where Ib- I EB(N.) denotes the inverse of the bijection lb. Hence, b[2f] ~ If, where 
b = 2b 0 Ib -I E B(N .). This implies (3). 

(iii) Proof of (3) => (1). Assume (3). Letl E [0, 1] and let ee f, I) = {Ib(il ), Ib(i2 ) ••• , 

Ib(ik )} for some kEN •. Then, by the assumption of (3), we get 

for j = 1, 2, ... , k. Hence, 

and, consequently, leeJ, 1)1 ~ k = Icef, 1)1. 
From (i), (ii), and (iii) we may conclude that (1)<::>(2)<::>(3), and the lemma is 

proved. Q.E.D. 

Lemma 2. Let If, 2fE·~. Then, (VI) and (V7), taken together, are equi
valent to 

(V7') Vef) ~ vef) ifmax lpi=max 2Pi and (3bEB(N.»ef~b[2f]) 
i i 

as well as to 

(V7") V ef) ~ Vef) if max I Pi = max 2Pi and (V I E [0, 1])[ leef, 1)1 ~ leef, 1)1]. 
i i 

Proof: Let If, 2fE"$' and let max/Pi = maxi 2Pi' 
(i) Assume that the function V: $' --. [0, 00) under consideration satisfies the 

properties (VI) and (V7). Assume further that the statement 

is true. Then, by (V7), we obtain 
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and, from (VI), we obtain 

Hence, Ve f) ~ Vef). 
(ii) Assume that V satisfies (V7') and If ~ 2f. Then, Clearly If = b[2f], where 

beB(Nn ) is the identity function on N n , and, according to (V7'), Vef) ~ Vef). This 
implies (V7). Assume now that the statement 

is true. Then, If ~ b [2f] and If ~ b [2f], and from (V7') we get 

and 

Hence, 

which implies (V 1). 
It follows from (i) and (ii) that (VI) and (V7) are equivalent to (V7'). It follows 

directly from Lemma 1 that (V7') is equivalent to (V7"). Q.E.D. 

C.2. JOIN PROCEDURE AND THE UNBIASED (MAXIMUM ENTROPY) 
RECONSTRUCTION FOR PROBABILISTIC SYSTEMS· 

Theorem 2. Given a probabilistic and consistent behavior structure system SF 
whose elements are characterized by behavior functions "f(k e N q ), if SF is such that no 
inconsistencies occur during the basic join procedure, then the procedure determines 
the unbiased (maximum entropy) reconstruction from SF. 

Proof (Lewis [LE2]). Let !' = */f and f" be behavior functions of two 
reconstructions from S. We can start with the inequality 

- If"(oc) logf"(oc):;; - If"(oc) log!'(oc), 
a a 

which is well known in information theory as Gibbs' theorem. Now, !'(oc) can be 

• This material is related to Sections 4.6 and 4.7; it is adopted from one of my papers [CA6]. 
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expressed as 

f'(rx) = n kf(kf3). 
k 

where kf3 -< rx, and kf(kf3) denotes in this proof either basic or conditional probability, as 
required by the individual joins. Hence, 

- If"(rx) logf'(rx) = - If"(rx) log n kf(kf3) 
k 

= -I f"(rx) I log kf(kf3), 
k 

where kf3 -< rx. Since f" represents a reconstruction from SF, the terms in the last 
expression can be grouped together for each k f3 -< rx in a way described by the formula 

- I f" (rx) log kf(kf3), 
a >- 'p 

which can be written as 

When all these expressions are added, we obtain 

- I I kf(kf3) log "f(kf3), 
k '{3 

which is exactly the same as the entropy of I' (rx); indeed, by repeating the previous 
arguments, we obtain 

- I I' (rx) log I' (rx) = - If' (rx) I log kf(kf3), 
k 

where kf3 >- rx, and sinceI' (rx) is a reconstruction from SF, we can group the terms in the 
last expression in the same way as before and derive, eventually, the same final 
expression. Hence, 

- If"(rx) logI'(rx) = - If'(rx) logI'(rx), 

and the original inequality becomes 

- If"(rx) log f" (rx) S - If'(rx) logI'(rx), 

which proves the theorem. Q.E.D. 
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In order to justify the iterative join procedure, we observe that if * J; _ I is a 
degenerate join which can be expressed as 

where ip = ac. This iterative scheme is exactly the same as the one proposed by Brown 
[BR 7] and based on the idea of proportional fitting: 

Hence, we can take advantage of Brown's proofs (which are also well covered in a book 
by Bishop et al. [BIl]) of the following propositions to justify the procedure: 

i. the iterative join procedure converges to a behavior function which conforms to 
the structure systems SF; 

ii. the join procedure converges to the behavior function of the unbiased 
reconstruction from SF. 

C.3. JOIN PROCEDURE AND THE UNBIASED (MAXIMUM 
UNCERTAINTY) RECOGNITION FOR POSSIBILISTIC SYSTEMS* 

Theorem 3. minE If(oc, P), 2f(y IP)] = min [If(oc, P), 2f(P, 'I)]' 

Proof. Clearly, the marginal possibility f(P) must satisfy the inequality f(P) 
~ max [If(ac,P), 2f(P, 'I)]. Using Eq. (3.113), the following four cases have to be 
considered, each of which leads to a particular result of min [If(ac, P), 2f(y I P)]: 

(i) f(P) = If(ac, P) and f(P) > 2f(P, 'I): in this case 2f(y I P) = 2f(P, 'I) and, hence, 
the theorem holds. 

(ii) f(f3) > If(ac, P) and f(P) = 2f(P, y): in this case 2f(y IP) = ef(p, y), 1] and 
If(ac,P) < 2f(P, y); hence min[lf(ac,f3), [2f(P, '1),1]] = If(ac,P) and the theorem holds. 

(iii) f(P) = If(ac, P) and f(P) = 2f(P, y): in this case 2f(y IP) = [2f(P, y), 1] and 
min [If(ac, P), [2f(P, y), 1]] = If(ac, f3) = 2f(P, y); the theorem again holds. 

(iv) f(P) > If(ac,P) and f(P) > 2f(P, 'I): in this case 2f(yIP)=2f(P,y) and the 
theorem holds; this concludes the proof. Q.E.D. 

Theorem 4. min[lf(p), 2f(yIP)] = min [If(P), 2f(P, 'I)]. 

* The theorems presented here are related to Sections 4.6 and 4.7 are adopted from one. of my 
papers [CA9]. 
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Proof. Only two cases have to be considered. If If({3) > 2f({3, y), then 2f(y 1{3) 
= 2f({3, y) and the theorem holds. If If({3) = 2f({3, y), then 2f( y 1 {3) = [2f({3, y), 1] and 
min[lf({3), ef({3, y), 1]] = If({3) = 2f({3, y) and the theorem again holds. Q.E.D. 

Theorem 5. Given a possibilistic and consistent behavior structure system SF 
whose elements are characterized by behavior functions "f(k EN q), the basic join 
procedure determines the unbiased (maximum U -uncertainty) reconstruction from SF. 

Proof. Since [f ! k V] (k{3) = max" >'pf(tX) for each k, the largest values of the 
overall possibility distribution are preserved in all projections, i.e., if tXmax E C is such 
that f(tXmax} = max"ecf(tX} and k{3 -< tX, then "f(k{3) = f(tXmax) for each k and some k{3. 
Hence, valuesf(tXmax} are preserved in each member of the reconstruction family. 

Let us consider now a reconstruction of an aggregate state represented by a 
concatenation of three disjoint substates tX I ,{3I,YI, i.e., (tXI,{3I'YI)EC. Let the 
following list include values of the overall possibility distribution for all aggregate 
states which are relevant for determining the value If(tXI' {31) of the projection If: 

f(tX I, {31'YI)=a l (=x), 

f(tX I, {31' Y2) = a2, 

Then, If(tX I, {31} = maXi ai . Similarly, let the values of the overall possibility distribution 
for all aggregate states which are relevant for determining the value 2f({3I' yd of the 
projection 2f be 

f(tX I, {31' yd = b l (= x), 

f(tX z, {31' YI) = bz, 

Then, 2f({3I,yd = maxjbj. By Theorem 3, [If*2f](tX I,{3I,yd = min[lf(tX I ,{3d, 
2f({3I' YI)]. The possibilities relevant for the determination of this value of the join 
If* 2f are 

either (i) maxai = x, 
i 

or (ii) maxai = Y +- x (y > x), 

and 

either (iii) max bi = x 

or (iv) maxbi = Z +- x (z > x). 
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This leads to the following four cases: 

(i) and (iii): ef*2f](a l ,PI,Yd=x; 

(i) and (iv): [If* 2f](a l , PI' YI) = min [x, z] = x; 

(ii) and (iii): [1* 2f](a l , PI' yd = min [y, x] = x; 

(ii) and (iv): [If* 2f](a l , PI' yd = min [y, z]. 

The first three cases are obvious; they all lead to the correct reconstruction value which 
is the same value in each member of the reconstruction family. In the case (ii) and (iv), 
both y > x and z > x, and min[y, z] is the largest possibility value for state (ai' PI' YI) 
which satisfies the projections If and 2/ Indeed, if there were a member in the 
reconstruction family with a larger possibility value, say value w (w > y and w > z), then 
it would be If(a l , PI) = wand 2f(a l , YI) = w, which contradicts the assumption of this 
case. 

Since state (ai' PI' YI) was chosen as an arbitrary state, the same conclusions hold 
for any state of C. Moreover, if (a 1, PI' Y I) were only a substate of an aggregate state, we 
would come to the same conclusions by extending each of the previously considered 
states to a set of states distinguished by some additional substances, say a I' a2, ... , am' 

The same arguments which were made for the first join operation If * 2f can be 
made for a second join operation, e.g., 3f * [If * 2f], etc. 

Since all members of the reconstruction family have the same maxima and the 
join operation determines for each state the largest possibility value which does not 
violate the given projections, it directly follows from Property (U7) of the 
V -uncertainty (Section C.l) that the join operation determines the reconstruction with 
maximum V-uncertainty. 

Finally, we have to investigate the effect of a loop in the given structure system on 
the result of the join operation. A loop involves at least two joins, say 3f * (If * 2f), such 
that 

If: XI x X 2 -. [0,1], 

2f: X 2 X X3 -. [0,1], 

3f: XI X X3 -. [0,1]. 

Let us consider again the reconstruction of an aggregate state (ai, PI, YI) E C, where 
aIEX I, PI EX2, YIEX3' Let If, 2f, and If*2f be exactly the same as described 
previously in this proof and let the following list include values of the overall possibility 
distribution for all aggregate states which are relevant for determining the value 
3f(a l , yd of the projection 3f: 

f(a l , PI' yd = C1 (= x), 

f(a 1 , P2' yd = C2 , 
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Then, 3f(rx l , yd = maxici and ef* [If* 2f]](rxl' /31' yd = min [3f(rx l , Yl)' 
[If * 2f] (rx I' /31' Y 1)]. As before, there are two possibilities relevant for the determi
nation of this value: 

either (i) maxci = x, 
i 

or (ii) maxci = w ~x (w > x), 
i 

and 
either (iii) ef* 2f](rxl' /31' YI) = x, 

or (iv) [If* 2f](rxl>/31' yd = min [y,z] > x. 

As before, cases (i}-(iii), (i}-(iv), and (ii}-(iii) lead to the correct reconstruction 
value which is the same value in each member of the reconstruction family. In the 
case (ii}-(iv), 

Due to the same arguments which were used previously in this proof, the value 
min[w, y, z] is the largest possibility value for state (rx\> /31' yd which satisfied all the 
three projections If, 2f, 3j. Hence, the theorem holds also for structure systems with 
loops. This means that no iterative procedure is needed for systems with loops and the 
proof is concluded. Q.E.D. 

C.4. GENERAL INFORMATION DISTANCE FOR POSSIBILITY 
DISTRIBUTIONS t 

For convenience, the symbols V and 1\ are used in this section as the maximum and 
minimum operators, respectively. 

First, let us introduce a partial ordering of possibility distributions defined on the 
same set, which assumes a key role in our considerations in this section. 

Definition 7. For any pair If, 2f E 3F, of normalized possibility distributions 
If ~ 2f itT If(x) ~ 2f(x) for all x EX. 

It is obvious that (3F, ~ ) is a poset. It has a unique universal upper bound, say *f, 
defined by *f(x) = 1 for all XEX. For any pair If, 2fE3F, the join If V 2fexists in the 
poset and is defined by the equation 

efV 2f)(X) = If(x) V 2f(x) for all XEX; 

t Results presented here are related to Section 4.9 and are adopted from my paper [H13J. 
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the meet 'f 1\ 2f, which exists only for some pairs If, 2fEg;-, is defined by 

('f 1\ 2f)(X) = 'f(x) 1\ 2f(x) for all XEX. 

More specifically, the meet 'f 1\ 2f exists iff there exists at least one x E X such 
that 'f(x) = 2f(x) = 1; if no such x exists, 'f 1\ 2f is not normalized and, hence, 
'f 1\ 2f¢g;-. 

Definition 8. For any pair If, 2fEg;- such that 'f~ 2f, we define the gain of 
iriformation, g('f, 2f), when 2f is replaced by 'f as 

g('f, 2f) = Vef)-V('f) 

= 1'10 leef, 1)1 dl. 
o g2 le(' f, 1)1 

(C.l) 

Remark 1. Since 'f ~ 2f implies c(' f, I) ~ cef, I) for all 1 E [0, 1], it follows 
immediately from Definition 8 that g('f, 2f) ~ o. 

Remark 2. For any' f, 2 f, 3 f E g;- such that' f ~ 2 f ~ 3 f, the gain of information is 
additive, i.e., 

Indeed, 

g('f, 3f) = Vef)-V('f) 

= [Vef) - Vef)] + [Vef) - V('f)] 

= gef, 3f)+g(,f, 2f). 

Some additional properties of the gain of information (Definition 8), needed later 
in our considerations, are stated by the following two lemmas. 

Lemma 3. For any If, 2fEg;- such that 'f~ 2f, g('f, 2f) = 0 iff 'f= 2f (i.e., 
'f(x) = 2f(x) for all x EX). 

Proof Let K (/) == log2leef, 1)I-Iog2 Ie(,f, 1)1 for alii E [0, 1]. Then, 

g('f, 2f) = J: K (l)dl. 

Since' f::::; 2f implies e(' f, I) ~ eef, I) and, consequently, leef, 1)1 ~ leef,I)I, we get 
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K (I) ~ 0 for all IE [0, 1]. Hence, 

gef, 2f) = O-=K(l) = 0 for all/E[O, 1] 

-=lcef,/)1 = Icef,/)1 

for all I E [0, 1]. 

Since cef, I) ~ cef, l) for all/E[O, 1], we obtain for all/E[O, 1] 

leef, 1)1 = Icef,l)1 -= cef, I) = cef, I) 

If If = 2f, then the last equation is clearly satisfied. If If f- 2f, i.e., If(xo} f- 2f(xo) for 

some Xo E X, then If(xo) < 2f(xo) and, consequently, Xo ¢ ce f, 10) and Xo E cef, 10) for 
some 10 such that If(xo) < 10 < 2f(xo), say 10 = [If(x) + 2f(x)]/2. This implies that 
ce f, 10) f- cef, 10)' Hence, ce f, I) = cef, I) for all IE [0, 1] iff 1 f = 2f and, therefore, 
gef, 2f) = 0 iff If = 2f. Q.E.D. 

Lemma 4. ge f, 3f) ~ ge f, 2f) for any 1 f, 2f, 3f E g; such that 1 f ~ 2f ~ 3f, where 
the equality holds iff 2f = 3f. 

Proof By Remark 2, 

By Remark 1, gef, 3f) ~ 0, where the equality holds iff 2f = 3f (Lemma 3). Hence, the 
proposition holds. Q.E.D. 

The partial ordering introduced in Definition 7 can be described as the relation 

The information gain, as introduced in Definition 8, can then be viewed as a function on 
this relation, i.e., 

g: R ..... [0, 00 ), 

which, according to Lemma 3, satisfies the nondegeneracy requirement of metric 
distances. It can easily be extended to satisfy the symmetry requirement as well. 

Definition 9. A symmetric extension of function g (Definition 8) is a function 

g: R u R ~ 1 ..... [0, 00 ), 

where R ~ 1 denotes the inverse relation of R, that possesses the following properties: 
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(gl) glR = g, where glR denotes the restriction of the domain of function g 
to set R,t 

(g2) g is symmetric, i.e. gef, if) = gef, if) for all ef, if)eR u R- I • 

Lemma 5. The only function g that qualifies as a symmetric extension of g, as 
specified by Definition 9, is such that 

Proof Let ef, 2f)eR. Then, from (gl), 

Let ef, 2f)eR-I. Then, from (g2), 

and from (gl), 

Hence, 

for all 

gef, If) = gef, If) = uctf)- Uef) 

= I Uef)-Uef)l. 

(C.2) 

Conversely, it is obvious that g defined by (C.2) is a function on R u R - I into [0, (0) 
that satisfies both (gl) and (g2). Q.E.D. 

Since function g characterizes information difference, but does not distinguish 
whether information is gained or lost, it seems reasonable to refer to it as information 
variation. It is obvious that g has the properties of nondegeneracy and symmetry. In 
addition, it is also additive in the same sense as function g (Remark 2). It is thus 
meaningful to view the information variation g as a measure of information closeness 
between possibility distributions in the restricted set R u R -I of $' x $'. 

Definition 10. A metric distance in $' based on information closeness is a function 

d : $' x $'-+ [0, (0) 

t For any function, say a: A -+ B, the symbol a I Cis used·in this section to denote the restriction of function a 
to the domain C, where C c A. 
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such that 

(dl) def, 2f) = 0 iff If = 2f (nondegeneracy); 

(d2) def, 2f) = def, If) (symmetry); 

(d3) def, 3f);;;; def, 2f)+def, 3f) (triangle property); 

(d4) d I R u R - I = 9 (restriction of d Ion R u R - I ). 

Our search for a function that would qualify as a metric distance specified in 
Definition 10 is expressed in terms of the following three lemmas. The main results of 
this search are then summarized in two theorems. 

Lemma 6. Let If, 2f, 3f E ~ and I f ~ 2f. Then, 

(C3) 

where the equality holds iff eef, I) = eef, I) or eef, I) ~ eef, I) for all IE [0, 1]. 

Proof It follows from If ~ 2f that eef, l) ~ eef, I) for all IE [0, 1]. Let 
rx = leef, 1)1, p = leef, 1)1, Y = leef, 1)1 for an arbitrary IE [0, 1]. Then, clearly, 
P~rx~O. Let b=leef,l)neef,I)1 and O=leef,l)neef,I)I. Then, clearly, 
Y ~ 0 ~ 15 ~ o. Hence, 

leef V 3f, 1)1 

leef,/)1 

leefV 3f, 1)1 

leef,/)1 

leef, I) ueef, 1)1 

leer, I) I 
leef, I) ueef, 1)1 

leef,I)1 

rx+y-b p+y-O Y(P-rx)+rxO-Pb 

rx P rxP 

y(P -rx)+rxO -po = (y -O)(P -rx) > 0 
rxp rxP =, 

where the first inequality is due to P ~ 0 and 0 ~ 15, while the second inequality is due to 
y ~ 0 and P ~ rx. This implies that 

leef, I) ueef, 1)1 leef, I) ueef, 1)1 
----,---- > ----::----

leef, 1)1 = leef,I)1 
(C4) 

is satisfied for all IE [0, 1]. When applying formula (C.1) to both sides of this inequality, 
we directly obtain the desired inequality gef, If V 3f) ;;:: gef, 2f V 3f). 

Ifthere exists some I for which the equality in (C4) does not hold, then neither does 
the equality in (C3). Hence, the equality in (C3) holds iff the equality in (C4) holds for 
all IE [0, 1]. which is equivalent to y = 0 = 15 or rx = p. These equalities are satisfied, 
since 

eef, I) 2 eef, I) neef, I) ;2 eef, I) n eef, I) 
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and 

eef, I) ~ eef, I). 

iff 

eef, I) = eef, I) II eef, I) = eef, I) II eef, I) 

or 

eef, I) = eef, I), 

i.e., 

or 
eef, I) = eef, I). Q.E.D. 

Lemma 7. Let 

(C.S) 

for all 1f, 2fEff. Then 

(a) for any 1f, 2f, 3fEff 

Gef, 3f) ~ Gef, 2f)+Gef, 3f), 

where the equality holds iff 2f'::;; 1f V 3f and, in addition, eef, I) £; eef, I) or 

eef, I) £; eef, I) for alII E [0, 1]; 
(b) for any ifEff (i = 1,2, ... , n), 

n-1 
Gef, nf) ~ L Gef, i+ 1f). 

i 1 

Proof. (a) Since 1f'::;; 1f V 3f'::;; 1f V 2f V 3f, it follows from Lemma 4 that 

gef, 1f V 3f) ~ gef, 1f V 2f V 3f),where the equality holds iff 1f V 3f = 1f V 2f V 3f, i.e., 
2f ~ 1f V 3f. By additivity of g (Remark 2), 

Since 2f'::;; 1f V 2f, it follows from Lemma 6 that 

where the equality holds iff eef, I) = ee f V 2f, I), i.e., eef, I) £; eef, I), or 
eef, I) £; eef, I), for all IE [0, 1]. Hence, 

(C.6) 
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where the equality holds iff 2f::;; If V 3f and, in addition, cef, /) £ cef, /) or 
cef, /) £ cef, /) for all / E [0, 1]. 

The same arguments by which (e.6) was derived can be repeated with If and 3f 
exchanged. This leads to the inequality 

(e.7) 

where the equality holds under exactly the same conditions as for (e.6). Proposition (a) 
now follows directly from (e.6) and (e.7). 

Proposition (b) is immediately obtained by repeatedly applying the result of (a). 
Q.E.D. 

Lemma 8. For any If, 2fE§", if If /\ 2fE§", then 

where the equality holds iff cef, /) £ cef, /) or cef, /) ~ cef, /) for all / E [0, 1]. 

Proof Assume If /\ 2fE§" and let 3f = If /\ 2f. Then, If V 2f = If and, clearly, 
gef, If V 2f) = 0. Hence, 

Similarly, 2f V 3f = 2f, gef, 2f V 3f) = 0, and we get 

We can see now that 

Since 

Gef, 2f) = gef, lfv 2f)+gef, lfv 2f), 

the inequality (e.8) follows directly from Lemma 7. Furthermore, it also follows from 
Lemma 7 that the equality in (e.8) is satisfied iff3f::;; If V 2f (i.e., If II 2f::;; If V 2f, which 
is always true) and 

cef, /) £ cef, I) = cef /\ 2f, I) = cef, I) 11 cef, I) 

or 

cef, /) £ cef, /) = cef /\ 2f, /) = cef, I) 11 cef, I), 

i.e. 

cef, /)£ cef, /) 
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or 

eef, I) c eef, I) 

for aliI e [0, 1]. 
Q.E.D. 

It is interesting to notice that If /\ 2fe$' is always true when eef, I) !;;;; eef, I), or 
eef, I) !;;;; eef, I) for all Ie [0,1]. Indeed, since eef, I) !;;;; eef, I) or eef, I) !;;;; eef, 1), 
eef /\ 2f, 1) = e(f, 1) /\ eef, 1) is equal to eef, 1) or eef, 1), neither of which is empty. 
Hence, eef /\ 2f, 1) # 0, i.e., If /\ 2fe$'. 

We are now in a position to state the main results of this section by the following 
two theorems. However, to simplify their formulations as well as proofs, let us first 
introduce some convenient notation. 

Let 

where N n = {1, 2, ... , n} for each n e 1\1 denotes the set of all paths through n elements 
(possibility distributions) of $' whose successive elements (fi' fi+ d are ordered, i.e., fi 

S; fi + 1 or fi ~ fi + 1 , and let 

For convenience, elements in each path of ct> will be referred to as nodes of the path. 
Let a function 

e:ct> -+ $' x$' 

such that e(lP) = (fl' fn) for each path IP = (fl' f2)(f2' f3) ... (fn -1' fn) be called an edge 
identifier. Clearly, function e is unique and many-to-one; given a path IP ect>, e identifies 
its edges (the first and last nodes). 

Given a path IP = (fl' f2)(f2' f3) ... (fn-1> fn) ect>, let N (IP) denote the sequence of 
nodes in the path, i.e., N(IP) = (f1' f2' ... , fn), and let 

n-l 
g(lP) = L g(fi' f i + 1 ) 

i = 1 

be called the length of the path. For any If, 2fe$', it is clear that Gef, 2f) = g(IP*), 
where IP* = ef, IfV 2f) efV 2f, 2f)ee- 1ef, 2f). 

Theorem 6. (a) min (g(lP) = Gef, 2f), where lPee- 1 ef, 2f); (b) if d is a metric 
distance in $' based on g, then d ef, 2f) ~ Gef, 2f) for any If, 2f e$'. 
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Proof (a) Let If, 2fE§. Consider an arbitrary ep such that epEe-Ief, 2f) and 

N(ep) = (fl' f2' ... , fn), i.e., If = fl and 2f = fn. Let the following set be defined on ep: 

N'fJ = {fd i E {2, 3, . . . , n - 1 }, f; - I ::::;; f; ~ f; + I 

or f;_1 ~ f;::::;; f;+I' and f;_1 f f; f f;+d· 

Assume that N'fJ = {hi' h2, ... , hm}, where hk = fit and ik < ik+ 1 for kENm • 

Case I. Assume N'fJ = 0. Then either If = fl ::::;; f2 ::::;; .•• ::::;; fn = 2f or If = fl 
~ f2 ~ ... ~ fn = 2f. Due to the additivity of 9 (Remark 2), which also holds for g, we 
get g(ep) = g('f, 2f). Since either If::::;; 2f or If ~ 2f, we have either If V 2f = 2f or If V 2f 
= If, respectively. Hence, 

i.e., 

gef, 2f) = g(lf, If V 2f)+gef, If V 2f) 

= Gef, 2f), 

g(ep) = G('f, 2f). 

Case II. Assume N'fJ f 0. Let ho = If, hm+ I = 2f and 

Then, by the addivity of g, we get g(ep) = g(ep'). 
(i) Assume that ho ::::;; h I and hm ~ hm + I. Then m is odd and for each kEN m' 

hk - I ::::;; hk ~ hk + I if k is odd 

and 

Hence, for k = 2j (j = 0,1, ... , (m+ 1)/2), hk V hk+2 ::::;; hk+1 and, by Lemma 4, we get 

and 

Therefore, 

and since 

m (m-I)/2 
g(ep) = g(ep') = I g(hk' hk+d ~ I G(h2j, h2j+2), 

k=1 j= 0 

(m-I)/2 
I G(h2j, h2j+2) ~ G(ho, hm+d, 

j= 0 
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according to Lemma 7, we get g(<p) ~ G(ho, hm+d = Gef, 2f). 
(ii) Assume that ho ~ hl or hm :s; hm + l' Three cases have to be considered. 
Assume first that ho ~ hl and hm ~ hm+ l' Then, ho ~ hl :s; h2 and, consequently, 

hl :s; ho /\ h2. By Lemma 4, 

and by Lemma 8, 

Hence, 

Therefore, for 

we get g(<p') ~ g(<jJ"). Applying the same transformation to <p" as to <p, we obtain 

<pili = (ho, ho V h2)(ho V h2' h3)(h3' h4) ... (hm' hm+ 1) E e- 1 ef, 2f) 

and g(<p") = g(<plll). Thus, 

g(<p) = g(<p") ~ g(<p") = g(<plll). 

Let N(<plll) = (h~,h'l"'" h~). Then, h~:S; h'l and ~-1 ~ h~. 
Assume now that ho :s; h 1 and hm :s; hm + 1 • By the same reasoning as in the previous 

case, <p can be transformed into <pl E e- 1 ef, 2f) such that g(<p) ~ g(<pl) and h~ :s; hL 
h~-l ~ h~, where N (<pl) = (h~, hL ... , h~). 

In the third case, i.e., ho ~ h 1 and hm ~ hm + l' we can first transform <p into <pili and, 
then, apply to <p'" the same transformation that was applied to <p to get <pl. As a result, 
we get <p2 Ee - 1ef, 2f) such that g(<p) ~ g(<plll) ~ g'(<p2) and h~:S; hi, h;'-l ~ h;'-l' 
where N(<p2) = (h~, hi, ... , h;'-d. 

Hence, in any of the three cases, we can transform <p into <p3 Ee- 1 ef, 2f) such that 
g(<p) ~ g(<p3) and h~:S; hi, h~ ~ h~+l' where N(<p3) = (h~, hi, ... , h~+d. Applying 
now the result of (i), we get g(<p) ~ g(<p3) ~ Gef, 2f). 

From Case I and Case II, we may conclude that 

(C.9) 

for any <pEe- 1ef, 2f). Since Gef, 2f) =g(<p*), where <p* = ef, IfV 2f)efV 2f, 2f) 
E e - 1 e f, 2f), the inequality (C.9) implies that 

where the min operator is applied to all <p E e - 1 e f, 2f). 
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(b) Let If, 2f E 9'. Since d satisfies the triangle inequality (Definition to), 

Since 

we have 

and 

Hence, 

def, 2f) ~ gef, If V 2f)+gef, If V 2f) 

= Gef, 2f), 

and this concludes the proof of (b). Q.E.D. 

Theorem 7. Function G (introduced in Lemma 7) is a metric distance in 9' based 
on information closeness (Definition 10). 

Proof We have to show that G satisfies requirements (d1)-(d4) specified in 
Definition 10. 

(dl) Gef, 2f) = gef, If V 2f)+gef, If V 2f) = 0 

<=>gef, If V 2f) = 0 and gef, If V 2f) = 0 

<=> If = If V 2f and 2f = If V 2f 

(by Lemma 3) 

<=> If = 2f. 

(d2) Gef, 2f) = Gef, If) is trivial. 
(d3) Proved in Lemma 7. 
(d4) For ef, 2f) E R u R -I, either If .:5: 2f or 2f .:5: I f and, thus, either If V 2f = 2f or 

If V 2f = If, respectively. Hence, either Gef, 2f) = gef, 2f) or Gef, 2f) = gef, If), 
respectively. Hence, Gef, 2f) = gef, 2f). Q.E.D. 
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APPENDIX D 

REFINEMENT LATTICES 

The three tables in this appendix contain complete descriptions of the refinement 
lattices ('§ n/i, :;; ) and (C(j n/i, :;;) for n = 3, 4, 5, as well as a characterization of the 
r-equivalence classes in these lattices. 

Each i-equivalence class of G-structures is represented in the tables by one 
particular G-structure, a representative of the respective i-equivalence class. These 
representatives are specified in the sixth column of each table by subsets of 
N n (n = 3, 4, 5) that are separated by slashes. The remaining columns in the table 
have the following meaning: g is an identifier of i-equivalence classes of 
G-structures; 1 (g) indicates the level of refinement (I-equivalence class) of G-structure g; 
c is an identifier of C-structures; j is an identifier by which i-equivalence classes are 
distinguished in each r-equivalence class (the i-equivalence classes of P-structures are 
located at the end of each r-equivalence class); l(c) indicates the level of refinement of 
C-structure c; # g denotes the number of distinct G-structures in each i-equivalence 
class; s(g) stands for the set of i-equivalence classes that are immediate successors 
(refinements) of the i-equivalence class identified by g; #s(g) denotes the set of numbers 
of immediate successors of i-equ;valence class g, one for each of the i-equivalence classes 
in s(g): individual i-equivalence classes in each set s(g) are listed (in terms of their 
identifiers) together with the corresponding numbers in set #s(g) as pairs separated by 
slashes; pairs in parentheses indicate successors that are in a different r-equivalence class 
than the reference G-structure g. 

Let #s(g, g') denote the number of immediate successors (refinements) of each 
general structure of the i-equivalence class g in the i-equivalence class g' and let # p(g', g) 

denote the numbers of immediate predecessors (coarsenings) of each general structure 
of the i-equivalence class g' in the i-equivalence class g. Then, by simple considerations, 
we find that 

#g' #s(g, g') = # g" #p(g', g). 

Hence, 

# ( ' ) _ #g'#s(g,g') 
p g,g - #g' . (D.l) 

503 
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TABLE D.I 
Lattices (~3/i,:S;) and (CC3/i,:S;) 

9 /(g) c j /(c) Subsystems #g s(g)/ #s(g) 

1 1 1 123 2/1 
2 2 2 12/13/23 1 (3/3) 
3 3 2 2 12/23 3 (4/2) 
4 4 3 3 12/3 3 (5/1) 
5 5 4 4 1/2/3 None 

TABLE D.2 
Lattices (~4/i, :s; ) and (CC4/i, :s; ) 

9 /(g) c j /(c) Subsystems #g s(g)/ #s(g) 

1 1 1 1234 1 2/1 
2 2 2 123/124/134/234 1 3/4 
3 3 3 123/124/134 4 4/3 
4 4 4 123/124/34 6 5/2 (7/1) 
5 5 5 123/14/24/34 4 6/1 (8/3) 
6 6 6 12/13/14/23/24/34 1 9/6 
7 5 2 1 2 123/124 6 8/2 
8 6 2 123/14/24 12 9/1 (10/2) 
9 7 3 12/13/14/23/24 6 (11/4 12/1) 

10 7 3 1 3 123/14 12 11/1 (13/1) 
11 8 2 12/13/14/23 12 (14/115/1 16/2) 
12 8 4 1 3 13/14/23/24 3 (16/4) 
13 8 5 1 4 123/4 4 14/1 
14 9 2 12/13/23/4 4 (17/3) 
15 9 6 1 4 12/13/14 4 (17/3) 
16 9 7 4 13/14/23 12 (17/218/1) 
17 10 8 5 13/14/2 12 (19/2) 
18 10 9 5 14/23 3 (19/2) 
19 11 10 6 14/2/3 6 (20/1) 
20 12 11 7 1/2/3/4 1 None 
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TABLE D.3 
Lattices (t'§s/i, ~) and (C{}s/i, ~) 

9 /(g) c j /(c) Subsystems IIg s(g)/lIs(9) 

1 1 1 12345 1 2/1 
2 2 2 1234/1235/1245/1345/2345 1 3/4 
3 3 3 1235/1245/1345/2345 5 4/4 
4 4 4 123/1245/1345/2345 10 5/1 6/4 
5 5 5 1245/1345/2345 10 7/3 
6 5 6 123/124/125/1345/2345 10 7/3 8/2 
7 6 7 124/125/1345/2345 30 9/2 10/2 
8 6 8 123/124/125/134/135/145/2345 5 10/6 11/1 
9 7 9 125/1345/2345 30 12/1 13/2 

10 7 10 124/125/134/135/145/2345 30 12/4 14/1 15/1 
11 7 11 123/124/125/134/135/145/234/ 15/10 

235/245/345 
12 8 12 12/1345/2345 10 16/2 (55/1) 
13 8 13 125/134/135/145/2345 60 16/1 17/1 18/2 19/1 
14 8 14 124/125/134/135/2345 15 18/420/1 
15 8 15 124/125/134/135/145/234/235/ 10 19/620/3 

245/345 
16 9 16 12/134/135/145/2345 20 21/3 22/1 (56/2) 
17 9 17 125/135/145/2345 20 21/3 23/1 
18 9 18 125/134/145/2345 60 21/2 24/1 25/1 
19 9 19 125/134/135/145/234/235/245/345 30 22/1 23/2 25/4 26/1 
20 9 20 124/125/134/135/234/235/245/345 15 25/426/4 
21 10 21 12/135/145/2345 60 27/228/1 (57/1) 
22 10 22 12/134/135/145/234/235/245/345 10 28/629/1 
23 10 23 125/135/145/234/235/245/345 20 28/3 30/1 31/3 
24 10 24 125/134/2345 IS 27/2 32/1 
25 10 25 125/134/145/234/235/245/345 60 28/2 31/2 32/1 33/2 
26 10 26 125/134/135/145/234/235/245 30 29/1 31/2 33/4 
27 11 27 12/13/145/2345 30 34/1 35/1 (59(2) 
28 11 28 12/135/145/234/235/245/345 60 35/236/1 37/238/1 (60/1) 
29 11 29 12/134/135/145/234/235/245 10 38/6 (601lJ 
30 11 30 125/135/145/235/245/345 5 36/6 
31 11 31 125/135/145/234/245/345 60 36/1 38/3 39/2 
32 11 32 125/134/234/235/245/345 15 35/2 39/4 
33 11 33 125/134/145/234/235/345 60 37/1 38/2 39/2 40/1 
34 12 34 12/13/14/15/2345 5 41/1 (63/4) 
35 12 35 12/13/145/234/235/245/345 30 41/1 42/2 43/2 (62/2) 
36 12 36 12/135/145/235/245/345 30 42/444/1 (65/1) 
37 12 37 12/135/145/234/245/345 60 42/243/245/1 (66/1) 
38 12 38 12/135/145/234/235/245 60 43/2 44/1 45/2 (64/1) 
39 12 39 125/135/145/234/345 60 42/1 43/1 45/2 46/1 
40 12 40 125/134/145/234/235 12 45/5 
41 13 41 12/13/14/15/234/235/245/345 5 47/4 (69/4) 
42 13 42 12/13/145/235/245/345 60 47/1 48/1 49/2 (68/2) 
43 13 43 12/13/145/234/235/345 60 47/149/250/1 (67/1 70/1) 
44 13 44 12/135/145/235/245/34 15 49/4 (71/2) 
45 13 45 12/135/145/234/245 60 49/2 50/2 (72/1) 
46 13 46 125/135/145/234 10 48/1 50/3 
47 14 47 12/13/14/15/235/245/345 20 51/3 (74/1 77/3) 
48 14 48 12/13/145/23/245/345 10 51/3 (76/3) 

(continued otlerlel~fl 
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TABLE D.3 (continued) 

g /(g) c j /(c) Subsystems #g s(g)/ #s(g) 

49 14 49 12/13/145/235/24/345 60 51/2 52/1 (73/2 78/1) 
50 14 50 12/13/145/234/235 30 51/1 52/2 (75/2) 
51 15 51 12/13/14/15/23/245/345 30 53/2 (79/1 80/2 82/2) 
52 15 52 12/13/145/235/24/34 15 53/2 (81/4) 
53 16 53 12/13/14/15/23/24/25/345 10 54/1 (83/6 84/1) 
54 17 54 12/13/14/15/23/24/25/34/35/45 1 (85/10) 
55 9 2 1 2 1234/1345 10 56/2 
56 10 2 123/124/1345/234 20 57/3 58/1 
57 11 3 124/1345/234 60 59/260/1 
58 11 4 123/124/134/135/145/234/345 10 60/661/1 
59 12 5 12/1345/234 60 62/1 63/1 (86/1) 
60 12 6 124/134/135/145/234/345 60 62/2 64/1 65/1 66/2 
61 12 7 123/124/135/145/234/345 10 64/6 
62 13 8 12/134/135/145/234/345 60 67/1 68/2 69/1 70/1 (88/1) 
63 13 9 12/1345/23/24 20 69/1 (87/3) 
64 13 10 124/135/145/234/345 60 67/271/1 72/2 
65 13 11 124/134/145/234/345 30 68/471/1 
66 13 12 124/134/135/234/345 60 68/2 70/2 72/1 
67 14 13 12/135/145/234/345 60 73/2 74/1 75/1 (91/1) 
68 14 14 12/134/145/234/345 120 73/1 76/1 77/1 78/1 (90/1) 
69 14 15 12/134/135/145/23/24/345 20 74/1 77/3 (89/3) 
70 14 16 12/134/135/145/234 60 75/1 77/1 78/2 (91/1) 
71 14 17 124/13/145/234/345 30 73/4 (106/1) 
72 14 18 124/135/234/345 60 73/2 75/2 
73 15 19 12/13/145/234/345 120 79/1 80/1 81/1 (94/1 107/1) 
74 15 20 12/135/145/23/24/345 20 80/3 (93/3) 
75 15 21 12/)35/145/234 60 80/1 81/2 (96/1) 
76 15 22 12/134/15/234/345 30 79/1 82/2 (95/2) 
77 15 23 12/134/145/23/24/345 60 80/1 82/2 (92/2 93/1) 
78 15 24 12/134/145/234/35 60 81/1 82/2 (94/2) 
79 16 25 12/13/14/15/234/345 30 84/2 (101/1 108/2) 
80 16 26 12/13/145/23/24/345 60 83/2 (97/299/1 108/1) 
81 16 27 12/13/145/234/35 60 83/2 (100/2 109/1) 
82 16 28 12/134/15/23/24/345 60 83/1 84/1 (97/298/1101/1) 
83 17 29 12/13/14/15/23/24/345 60 85/1 (102/2 103/1 104/1 

110/2) 
84 17 30 12/134/15/23/24/35/45 10 85/1 (103/6) 
85 18 31 12/13/14/15/23/24/34/35/45 10 (105/6 111/3) 
86 13 3 1 3 125/2345 30 87/1 88/1 
87 14 2 12/15/2345 30 89/1 (122/2) 
88 14 3 125/234/235/245/345 30 89/1 90/2 91/2 
89 15 4 12/15/234/235/245/345 30 92/2 93/2 (123/2) 
90 15 5 125/235/245/345 60 92/1 94/2 95/1 
91 15 6 125/234/245/345 60 93/1 94/2 96/1 
92 16 7 12/15/235/245/345 60 97/298/1 (124/1 125/1) 
93 16 8 12/15/234/245/345 60 97/2 99/1 (124/2) 
94 16 9 125/23/245/345 120 97/1 100/1 101/1 (112/1) 
95 16 10 125/235/245/34 30 98/1 101/2 (118/1) 
96 16 11 125/234/345 30 99/1 100/2 
97 17 12 12/15/23/245/345 120 102/1 103/1 (113/1 

126/1 127/1) 
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TABLE D.3 (continued) 

g I(g) c j I(c) Subsystems #g s(g)/ #s(g) 

98 17 13 12/15/235/245/34 30 103/2 (119/1 127/2) 
99 17 14 12/15/234/25/345 30 102/2 (126/2 131/1) 

100 17 15 125/23/24/345 60 102/1 104/1 (114/2) 
101 17 16 125/23/245/34/35 60 103/1 104/1 (113/2 119/1) 
102 18 17 12/15/23/24/25/345 60 105/1 (115/1 128/1 

129/1 132/1) 
103 18 18 12/15/23/245/34/35 60 105/1 (116/2 120/1 129/2) 
104 18 19 125/23/24/34/35/45 30 105/1 (115/4 120/1) 
105 19 20 12/15/23/24/25/34/35/45 30 (117/4 121/1 130/2 

133/1) 
106 15 4 1 3 123/125/145/134 15 107/4 
107 16 2 125/134/145/23 60 108/2 109/2 (112/1) 
108 17 3 12/134/145/23/25 60 110/2 (113/2 131/1) 
109 17 4 125/134/23/45 30 110/2 (114/2) 
110 18 5 12/13/145/23/25/34 60 111/1 (115/2 116/1 132/2) 
111 19 6 12/13/14/15/23/25/34/45 15 (117/4 133/4) 
112 17 5 4 125/235/345 60 113/2 114/1 
113 18 2 12/15/235/345 120 115/1 116/1 (135/1 142/1) 
114 18 3 125/23/345 60 115/2 (139/1) 
115 19 4 12/15/23/25/345 120 117/1 (136/1 140/1 

143/1 151/1) 
116 19 5 12/15/235/34/45 60 117/1 (137/2 143/2) 
117 20 6 12/15/23/25/34/35/45 60 (138/2 141/1 144/2 152/2) 
118 17 6 1 4 125/235/245 10 119/3 
119 18 2 12/15/235/245 30 120/2 (142/2) 
120 19 3 12/15/23/245/35 30 121/1 (143/4) 
121 20 4 12/15/23/24/25/35/45 10 (134/1 144/6) 
122 15 7 1 4 12/2345 20 123/1 (145/1) 
123 16 2 12/234/235/245/345 20 124/3 125/1 (146/1) 
124 17 3 12/235/245/345 60 126/2 127/1 (147/1) 
125 17 4 12/234/235/245 20 127/3 (147/1) 
126 18 5 12/23/245/345 60 128/1 129/1 (135/1 142/1) 
127 18 6 12/235/245/34 60 129/2 (142/1 148/1) 
128 19 7 12/23/24/25/345 20 130/1 (136/3 149/1) 
129 19 8 12/23/245/34/35 60 130/1 (137/1 143/2 149/1) 
130 20 9 12/23/24/25/34/35/45 20 (138/2 144/4 150/1) 
131 18 8 1 4 125/145/23/34 30 132/2 (135/2) 
132 19 2 12/145/23/25/34 60 133/1 (136/1 137/1 

151/2) 
133 20 3 12/14/15/23/25/34/45 30 (134/1 138/2 152/4) 
134 21 9 5 12/13/14/25/35/45 10 (153/6) 
135 19 10 1 5 12/235/345 60 136/1 137/1 (156/1) 
136 20 2 12/23/25/345 60 138/1 (157/1 159/2) 
137 20 3 12/235/34/45 60 138/1 (154/2 157/1) 
138 21 4 12/23/25/34/35/45 60 (153/1 155/1 158/1 160/2) 
139 19 11 1 5 125/345 15 140/2 
140 20 2 12/15/25/345 30 141/1 (159/2 161/1) 
141 21 3 12/15/25/34/35/45 15 (160/4 162/2) 
142 19 12 5 15/235/345 60 143/2 (156/1) 
143 20 2 15/23/25/345 120 144/1 (154/1 157/1 161/1) 
144 21 3 15/23/25/34/35/45 60 (153/1 155/2 158/1 162/2) 

(continued overleaf) 
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TABLE D.3 (continued) 

9 fIg) c j /(c) Subsystems #g s(g)/ #s(g) 

145 16 13 5 1/2345 5 146/1 
146 17 2 1/234/235/245/345 5 147/4 
147 18 3 1/235/245/345 20 148/3 
148 19 4 1/23/245/345 30 149/2 (156/1) 
149 20 5 1/23/24/25/345 20 150/1 (157/3) 
150 21 6 1/23/24/25/34/35/45 5 (158/6) 
151 20 14 5 12/135/24/45 60 152/1 (154/1 159/2) 
152 21 2 12/24/45/13/15/35 60 (153/2 155/1 160/2 163/1) 
153 22 15 I 6 12/13/15/24/45 60 (164/2 167/2 168/1) 
154 21 16 I 6 124/13/45 60 (155/1 169/2) 
155 22 2 12/13/14/24/45 60 (164/1 167/2 170/2) 
156 20 17 I 6 1/235/345 30 157/2 
157 21 2 1/23/25/345 60 158/1 (169/2) 
158 22 3 1/23/25/34/35/45 30 (168/1 170/4) 
159 21 18 6 124/13/35 60 160/1 (165/1 169/1) 
160 22 2 12/13/14/24/35 60 (164/2 166/1 167/1 170/1) 
161 21 19 I 6 124/13/15 30 162/1 (169/2) 
162 22 2 12/13/14/15/24 30 (167/2 170/2 171/1) 
163 22 20 6 12/13/24/35/45 12 (164/5) 
164 23 21 7 12/13/24/45 60 (172/2 176/2) 
165 22 22 I 7 124/35 10 166/1 (173/1) 
166 23 2 12/14/24/35 10 (174/1 176/3) 
167 23 23 I 7 12/23/24/45 60 (172/2 175/1 176/1) 
168 23 24 7 12/15/24/3/45 15 (172/4) 
169 22 25 7 12/245/3 60 170/1 (173/1) 
170 23 2 12/24/25/3/45 60 (172/2 174/1 175/1) 
171 23 26 7 13/23/34/35 5 (175/4) 
172 24 27 8 12/24/3/45 60 (177/2178/1) 
173 23 28 I 8 124/3/5 10 174/1 
174 24 2 12/14/24/3/5 10 (177/3) 
175 24 29 8 12/24/25/3 20 (178/3) 
176 24 30 8 12/24/35 30 (177/1 178/2) 
177 25 31 9 12/13/4/5 30 (179/2) 
178 25 32 9 12/3/45 15 (179/2) 
179 26 33 10 12/3/4/5 10 (180m 
180 27 34 II 1/2/3/4/5 None 
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CLASSES OF STRUCTURES RELEVANT 
TO RECONSTRUCT ABILITY ANALYSIS 

The term structure is used in reconstructability analysis (RA) for families of subsets of a 
given set of variables, say set V. There are 22" structures of this sort for n variables. 
Various special classes of structures are illustrated by the diagram in Figure E.1. The 
arrows in the diagram indicate a subset relationship between the classes. 

A special class of structures, which are relevant in some instances to RA, are 
structures that satisfy the irredundancy requirement. They are called in this book 
extended general structures or G + -structures. Another special class of structures are 
known as hypergraphs. A hypergraph is a family of subsets of V that covers all elements 
of V (i.e., it satisfies the covering condition) and does not contain the empty set. A 
special class of hypergraphs are G-structures, which represent reconstruction hypo
theses in RA. They satisfy the covering condition and irredundancy condition. 

The five subclasses of G-structures shown in Figure E.1 are based on undirected and 
reflexive graphs (symmetric and reflexive relations) defined on V. P-structures 
and C-structures are introduced in Section 4.7. A P-structure consists of all pairs (Vi' V) 
of ditTerent variables (i =i= j) that correspond to edges in the associated graph and all 
single variables that are not redundant. A C-structure consists of only and all maximal 
compatibility classes (cliques) or-the associated graph. Hence, there is one P-structure 
and one C-structure for each graph. For n variables, there are exactly 2n(n-l)/2 of either 
of them. 

M -structures also consist only of maximal compatibility classes of the associated 
graphs, but are not required to contain all of the classes (contrary to C-structures). 
Hence, the class of M -structures is larger than that of C-structures. I -structures consist 
of irreducible coverings of the associated graphs by maximal compatibility classes. 
There is a partial overlap between the classes of C-structures and I -structures, but 
neither of them is a subset of the other. 

Loopless structures are defined as structures that do not contain any loop of the 
following kind: let 

be a sequence of elements of a given structure (sequence of subsets of V) such that 

Ek; nEki+' =1= 0 
and m ~ 3; then, this sequence represents a loop if and only if there exists a variable 

509 
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APPENDIX E: ClASSES OF STRUCTURES RElEVANT TO RECONSTRUCT ABILITY ANALYSIS 

ALL STRUCTURES 

-- -- (:-----, · 
G+-STRUCTURES 

(irredundant) 

· ~ 

P-STRUCTURES 
(pair-wise) 

· 
C-STRUCTURES 

(complete maximally 
compatible) 

I 
I 

I 
I 
I 
L_ ---- - -. 

G-STRUCTURES 

HYPERGRAPHS 
(covering) 

-----------

STRUCTURES 

-, 
I 

(irredundant and covering) MEANINGFUL FOR 

R ECONSTR UCT ABI L1TY 

ANALYSIS 

M-STRUCTURES 

(maximally compatible) 

I-STRUCTURES 
(irreducible maximally 

compatible) 

LOOPLESS 

STRUCTURES 

---------------------------------~ 
Figure E.l. Classification of structures. 

V" E V such that v" E Ek , V" E Ek , and v" ~ Ek for j +- 1, m. Loopless structures form a I.. , 

special class of C-structures as well as I-structures. 
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Abstraction, 11,40,55,56 
Abstraction channel, 54, 56 
Adaptive systems, 370-377, 381 
Additivity, 113,481 
Aggregation function, 105, 126, 185 
Algebraic expression, 207 
Algorithm, 342-347 

exponential time, 345, 346 
Markov, 342 
polynomial time, 344-347 

Anticipatory system, 377, 381 
Antisymmetric relation, 475 
Antisymmetry, 46 
Applications of GSPS in 

archaeology, 452-455 
autopoietic systems, 379-381 
baseball performance, 462, 463 
biochemistry, 142-144 
birth control, 144-146 
climatology, 74-76 
computer performance evaluation, 136-138, 

248-252, 362, 363, 459-462 
developmental systems, 310-312, 316, 317 
ecology, 445-449 
engineering, 205, 206, 400-402, 406-408, 411, 

458,459 
error correction, 202-204 
ethology, 68-71, 130-133,438,439 
forestry, 60-63 
law, 138, 139, 192-194 
manufacturing, 200, 201 
medicine, 63, 64, 76, 253-259, 306-308, 

449-452, 455-458 
mosaic patterns, 146, 147,398 
musicology, 71-73, 395, 396 
performance evaluation of aircraft pilots, 319-321 
rosebush cultivation, 188-190 
social science, 106-108, 252, 253, 439-441 
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Applications of GSPS in (cont.) 

tessellation automata, 308-310, 315, 316 
traffic control, 73, 74, 306 

Architecture, 24-27, 432 
principles of, 26, 27 

Artificial intelligence, 3,,20, 28 
Attribute, 34-43, 45, 46, 51, 54, 61-74, 84, 85 

input, 57 
output, 57 

Automata theory, 166 
Automorphism, 387 
Autopoietic system, 377-381 

Backdrop, 35-39, 45, 46, 54, 60, 84, 85, 
304 

Background information, 106, 107, 109 
Basic variable, 14, 61, 167 
Behavior, 87, 89 
Behavior function, 91, 113, 126, 140, 150,223, 

359,370 
generative, 93-96, 100 

Behavior system, 91-93, 112, 125, 127, 133, 
140-142, 148, 184, 195, 212 

admissible, 130, 132, 133, 245, 336 
directed, 101, 148, 368, 402-404 
generative, 93, 94, 101, 148, 229 
neutral, 148,360,361,399-401 

Binary relation, 475 
Biology, 378 
Bit, 114 
Boltzmann entropy, 168 
Boolean lattice, 152, 233-235 
Bremermann's limit, 338-342 

Canonical structure, 234 
Cartesian product, 476 
Cartesian space, 386 
Category theory, 412 
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Change, 298-300, 304, 317 
identification of 317, 318 

Channel 
abstraction, 54, 56 
exemplification, 54, 56 
observation, 39-43, 54-56, 84, 85 

crisp, 42, 43, 60, 62, 85 
fuzzy, 42, 43, 54, 60, 62, 67 

Church's thesis, 343 
Classification of 

systems, 4-7, 9 
traditional science, 4, 7 

Clustering 
by average difference, 268 
by inside and outside distance, 269 

Coarsening 
of partition, 151 
of structure, 203, 231 

Cohesion, 4 
Combined ordering, 130, 131, 133, 158 
Compact mask, 135, 140 
Compatibility of systems, 182, 187, 188, 193,304 
Compatibility relation, 233,476 
Completely specified data, 77 
Complexity, 132, 133, 178,207,325-328,334, 

353 
computational, 112, 210, 232, 319, 342, 

349-353 
defect, 352 
descriptive, 334, 335 
disorganized, 329, 330, 333 
organized, 330-332, 334 

problem, 334, 342 
systems, 334, 351, 352, 358 

axioms of, 335, 351 
requirement of, 112 

Computational complexity, 112,210,232,319, 
342, 349-353 

Computation level 
global, 232, 236, 247 
local, 232, 236, 248 

Computer, 7, 19,20,28,52,53,372,373,390, 
398 

architecture of, 24, 25 
performance evaluation of, 136, 137 
technology of, 3, 19-23,350 

Conditional possibility, 100, 101, 123, 134, 
164-166 

Conditional probability, 100, 101, 115, 116, 134, 
164 

Connectance, 21 
critical, 22 

Connected relation, 476 
Connectivity, 46 
Consistency 

global, 227 
local, 194, 196, 198, 214, 225, 260 

Consistency axioms, 286 
Constraint, 4, 207 
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among variables, 15, 88, 91, 133, 148, 160 
of investigation, 83, 84 
support-invariant, 15, 96 

Continuity, 48, 49, 97, 98, 113,481 
Continuous systems, 53 
Continuous variable, 48-53, 167, 262, 263 
Control theory, 3, 381 
Control uniqueness, 190, 191, 193, 196,257,393 
Control units, 433, 435, 436 
Correlation, 4 
Coupling, 4, 188, 190-194 

directed, 190 
Coupling variable, 177, 188 
Covering, 229, 230, 232 
Credibility measure, 98 
Crisp data, 65, 66, 68, 104 
C-structure, 234, 267 
Cybernetics, 3, 28 
Cylinder, 264 
Cylindrance, 287 

Data, 65, 86, 178, 267 
completely specified, 77 
crisp, 65, 66, 68, 104 
fuzzy, 67, 68, 76, 85, 104-106 
gathering of, 85, 86 
generation of, 93-96, 102, 112 
incompletely specified, 77 
periodic, 78 
sampling of, 103, 107, 125, 126, 134, 140 

Data consistency 
local, 193 

Dataless system, 14 
Data systems, 15, 16,66-78,85, 112, 127, 133, 

134, 149, 160-163, 184, 379 
complete, 161 
directed, 67 
neutral, 66, 395-398 
with semantics, 66, 67 

Decision theory, 3, 28 
Decomposition, 207-210, 285, 371 
Defect complexity, 352 
Degenerate join, 223-225, 477 
Dependence, 4 
Depth of mask, 109 
Descriptive complexity, 334, 335 
Determinism, requirement of, 112 
Deterministic system, 93, 96, 100, 101, 162,205, 

207,329 
Developmental system, 311, 316, 322 
Difference, 297, 298 
Differential equation, 52, 167,328,329 
Directed system, 14, 57-60, 63, 115, 166 

degenerate, 58, 59 
Discovery approach, 161-164, 275 
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Discrete system, 53, 97, 98 
Discrete variable, 48-53, 68, 79 
Disorganized complexity, 329, 330, 333 
Distance, 38, 260, 359, 476 

Euclidean, 228 
Hamming, 228, 359 
information, 228, 245, 248, 270-273, 283, 287 

probabilistic, 229, 272 
possibilistic, 229, 272, 492-502 

metric, 47, 48, 477 
Disturbance, 373-377 
Don't care conditions, 77 

Element 
of structure system, 177, 178, 187, 192 
of metasystem, 304, 312 

Emergent property, 326 
Empirical investigation, 66, 83-87, 302 
Engineering, 3, 12, 179, 202, 264, 265, 391 
Entropy minimax, 278, 279 
Environment, 33, 191, 192,298,371,373,376, 

377 
of investigator, 13 
of object, 13 
of system, 14, 57-60, 100 
external, 196 
internal, 196 

Epistemological hierarchy, 13-16,44, 103, 148, 
160,163,245,261,300,301,312, 
419-421,433 

Epistemological levels, 5, 14-16 
Epistemological type, 44, 45, 78, 86, 103, 177, 

353, 392, 393,419, 433 
admissible, 429 

Epistemology, 13 
Equivalence relation, 476 
Error correction, 187, 188, 202, 373 
Euclidean distance, 228 
Evolution, 326 
Exemplification, 38, 40 
Exemplification channel, 54, 56 
Expansibility, 113 
Experiment, 85 
Expert system, 464, 467 
Explanation, 162, 167 
Exponential time algorithm, 345, 346 
Extended mask, 140 
External interface, 434-436 

Feedback paradigm, 366 
Feedforward paradigm, 366 
Finite state machines, 161, 163, 166 

deterministic, 166 
Frequencies 

of states, 103-107 
of transitions, 134 
relative, 104 

Function, 476 
one-to-one, 477 
onto, 477 

Functional equations, 207-209, 285 
Fuzzy data, 67, 68, 76, 85, 104-106 
Fuzzy measure, 97-99, 164 
Fuzzy relation equations, 285 
Fuzzy set, 476 
Fuzzy set theory, 78, 332 

Generalization, 162 
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General systems problem solver (GSPS), 10-14, 19, 
27-29,40,51,53-57,77,84-87,103, 
106,112,127,132,133,137,148,157, 
161,162, 166, 167, 181,211,247,260, 
264,267,274,285,298,300,317,319, 
328,334,336,341,343,344,349-351, 
357,358,377,378,391,419-437,445, 
446, 448-450, 452, 453, 459, 460, 
464-467 

General systems research, 3, 14,27,28 
General variable, 38 
Generated state, 148, 149 
Generated variable, 92, 101, 133, 195, 196 
Generating state, 148, 149 
Generating variable, 92, 101, 133, 195, 196 
Generative mask, 92 
Generative system, 15, 16, 86--88, 148-150, 160, 

161, 164, 177, 184,205,298 
Global consistency, 227 
Global inconsistency, 282, 283 
Goal, 358-363, 368-371, 378 
Goal-implementing element, 364, 365, 369, 370, 

372 
Goal-orientation, 360 

degree of, 360 
Goal-oriented system, 359-373, 378, 381 

structure paradigm of, 364-370 
Goal-seeking element, 364, 365, 369-372, 374 
Goal-seeking traits, 360, 378 
Goal-seeking variable, 360, 362, 363, 369, 374, 

377 
Godel's proof, 17,29 
Graph,476 
Group, 476 
G-structure, 230, 244 

Hamming distance, 228, 359 
Hartley measure, 166 
Heuristic method, 211, 341 
Hierarchy 

of epistemological types, 13-16,44, 103, 148, 
160, 163 

of structure systems, 178 
Holism, 180, 181,284,285 
Homomorphic image, 393 
Homomorphism, 476 
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Human mind, 20 
Hypergraph, 287, 476 

Identifiability quotient, 221, 260, 264 
Identification problem, 212-228, 260, 261, 281, 

285,287,288 
Identity, 300, 30 I 
i-equivalence, 234 
Image system, 66, 140, 152 

general, 54-56, 66, 88, 91 
specific, 54-56 

Implementation, 26 
Impossible figures, 283 
Incompletely specified data, 77 
Inconsistency 

global, 282, 283 
local, 282-284, 288 

Independence, 164, 165 
Induced proposition, 277 
Inductive inference, 222, 267 

reconstruction principle of, 279, 288 
Inductive reasoning, 162-164, 274-281 
Inductive systems modeling, 102 
Information, 4, 213, 228, 277, 326, 335, 352 

background, 106, 107, 109 
Hartley, 166 
loss of, 223, 228, 247 
measure, 125, 166 
possibilistic, 166 
society, 28 
theory of, 3, 28, 277 

Information distance, 228, 245, 248, 270-273, 283, 
287 

possibilistic, 229, 272, 492-502 
probabilistic, 229, 272 

Information measure, 125, 166 
Information theory, 3, 28, 166-168 
Initial condition, 93, 161 
Input attribute, 57 
Input mapping, 393-395,402-404 
Input/output identifier, 57-60, 183, 190 
Input variable, 57-60, 100, 190, 191, 197,207, 

370, 393, 394, 403 
Inquiry procedure, 434, 435 
Instrumentation, 37 
Interaction, 4, 13, 14, 177 
Interconnection, 4 
Interface 

external, 434-436 
internal, 434-436 

Internal interface, 434-436 
Internal state, 166, 167 
Internal variable, 15, 87, 163 
Interpretation, II, 55, 56, 86 
Intractable problem, 346-350,436 
Intuition amplifier, 20, 21 
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Invariance, 298 
Investigator, 13, 14, 55, 56, 83-86, 112, 302, 325 
Irredundancy, 187, 193, 194, 198,202,203,230 
Isomorphic structure, 234 
Isomorphic systems, 5, 392 
Isomorphism, 477 

Join, 223-225, 477 
degenerate, 224, 225 

Join procedure, 223, 251, 264, 489-492 
basic, 224, 225, 286, 487 
iterative, 225-227, 244, 287, 489 

Joint resolution lattice, 153-155 

Knowledge base unit, 433, 435, 436 

Largest acceptable mask, 110, 112, 125-128 
Lattice, 477 

Boolean, 152, 233-235 
of resolution forms, 151-155 
of structure refinements, 231, 232, 244, 503-508 
of variables, 150 

I-cut, 120, 480 
function, 120, 480 

Learning, 326 
Learning system, 367 
Least risk reconstruction, 223, 260 
I-equivalence, 242 
Level set, 121 
Lexicographic ordering, 477 
Lindenmayer's system, 311 
Linear ordering, 477 
Linkage, 4 
Local consistency, 194, 196, 198, 214, 225, 260 
Local inconsistency, 282-284, 288 
Loopless structure, 244 
Loss of information, 223, 228, 247 
I-structure, 244 

Maintainability, 179, 180, 207 
Manageability, 178, 180 
Management, 12 
Man-made system, 264, 265, 286 
Mapping 

input, 393, 395, 402-404 
output, 393-395, 402-404 

Markov algorithm, 342 
Mask, 89-96, 100, 103, 107-112, 133-135, 149, 

164, 167, 398, 399, 442, 448, 450, 452, 
456 

compact, 135, 140 
depth of, 109 
extended, 140 
generative, 92 
largest acceptable, 110, 112, 125-128 
meaningful, 133 
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Mask (cont.) 

memoryless, 103, 106, 107, 109, 143 
of directed system, 100 
reference of, 90, 96 

Mathematical model, 390 
Mathematical systems theory, 3, 14, 28 
Mathematical theory, 17, 18 
Mathematics, 16-19, 342 

applied, 17, 18,391 
pure, 16, 17 

Maximal compatibility class, 234 
Maximum entropy principle, 7, 164,222,277, 

285-287, 352 
Measurement error, 41 
Measure of complexity, 127, 157 
Measuring instrument, 39 
Measuring procedure, 39 
Medicine, 12 
Memoryless mask, 103, 106, 107, 109, 143 
Memory space, 178 
Metamethodological support unit, 433, 435, 436 
Metamethodology, 19 
Metaphor, 391 
Metasystem, 15, 16,303-317,372,374,375,378, 

379 
goal-oriented, 369 
identification of, 319-322 
multilevel, 315-317 
types of, 305, 411, 412 

Methodological distinction, 5, 9, 38, 44-51, 60, 
86, 98, 99, 103, 133, 149, 262, 349, 
421-423,434 

admissible, 429 
Methodological paradigm, 18, 19 
Methodological pragmatism, 275, 276 
Methodological tool, 433, 435, 436 
Metric distance, 47, 48, 477 
Metric space, 47 
Minimum entropy principle, 7, 277 
Minkowski distances, 228 
Misfit requirements, 103, 107 
Model, 78, 371, 389 

of data system, 395 
of environment, 376, 377 
of generative systems, 399 
of metasystem, 411, 412 
of source system, 392, 395 
of structure system, 408-411 
scale, 391 

Modeling, 10, 390, 395, 408 
Modeling system, 389, 390, 392-395, 398,402, 

403, 408, 409 
Monotonicity, 97, 122,481 
Mosaic, 146, 398, 404 
Multigoal-oriented system, 370-372 

autonomous, 370, 372 

Multilevel metasystem, 315-317 

Natural language, 276, 278 
Necessity measure, 98 
Neighborhood 

of structure, 241-243, 264 
of support instance, 88, 91 

Neutral system, 14, 57-60, 78 
Next state, 134, 140 
Nominal scale variable, 46 
Nondegeneracy,47 
Nondeterminism 

degree of, 103, 112, 127 
Noninteraction, 164, 165 
Normalization of entropy, 113 
NP-complete problems, 347, 348, 353 
NP-problems, 347 
Numerical methods, 52 
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Object, 13,33,34,55,56,60,63,68,71,78,83, 
86 

abstract, 34 
man-made, 34 
material, 34 
natural, 34 

Objective criteria, 205, 207 
Object system, 37, 54-56, 78 
Observation channel, 39-43, 54-56, 84, 85 

crisp, 42, 43, 60, 62, 65 
fuzzy, 42, 43, 54, 60, 62, 67 

Observation error, 52 
Observation uncertainty, 41 
One-to-one function, 477 
Onto function, 477 
Operation, 477 
Operationalism, 37 
Operations research, 3, 28 
Optimization problem, 22, 223, 371 
Ordering, 38, 46-49 

combined, 130, 131, 133, 158 
complexity, 128, 158, 245 
continuous, 48 
distance, 245 
linear, 46, 62 
of possibility distribution, 121 
partial, 146 
refinement, 245 

on partitions, 85 
on structures, 203, 231 

submask, 128-131 
Ordinal scale variable, 47 
Organization, 4 
Organized complexity, 330-332, 334 
Original, 389, 392, 398, 402, 403, 408, 409 
Orthographic projection, 262 
Output attribute, 57 
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Output mapping, 393-395, 402-404 
Output variable, 57-60, 190, 191, 197,207,393, 

394,403 
Overall system, 177-180,212,213,222,227, 

228-231,244,265.270 

Paradigm, 390 
Part, 177, 178, 180-182,205,212,213,227,284 
Partial ordering, 477 
Partition, 477 
Partition product, 151 
Partition refinement, 151, 152 
Partition sum, 151 
Pattern, 4 
Pattern recognition, 163, 277 
Perfonnance function, 358-363, 368, 369 
Periodic data, 78 
Plausibility measure, 98 
Polynomial time algorithm, 344-347 
Population, 35, 36, 43, 47 
Possibilistic infonnation, 166 
Possibility distribution, 120, 126, 164, 479, 480 

crisp, 99 
function, 99, 103, 104, 120 
maximum, 220 
minimum, 220 
nonnalized, 120 

Possibility measure, 98, 99, 164 
Possibility subdistribution, 121 
Postulational approach, 162-164 
Power set, 477 
P-problems, 346-348 
Prediction, 118, 162, 167,281 
Preordering, 245 
Present state, 134, 140 
Primary traits, 300-302, 305 
Primitive system, 14 
Probability distribution, 104, 114, 126 

function, 98, 99, 103, 104, 113, 168 
Probability measure, 97, 98 
Probability theory, 164,277,285 
Problem 

intractable, 346-350, 436 
tractable, 346, 348, 350 

Problem complexity, 334, 342 
Problem space, 9 
Problem type, 103, 112, 157,325 
Production rules, 311, 312, 378 
Projection, 126, 150, 195, 214, 225, 260, 262, 287 

orthographic, 262 
Pseudo-frequencies, 105 
P -structure, 234 
Purpose of investigation, 55, 56, 83, 86, 87, 178 

Quasiordering, 128, 130, 158, 393, 477 

Random generator, 267 
RC-procedure, 236, 239 
Realism, 37 
Realization, 26 
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Reconstructability analysis, 21, 23, 260-265, 
267-274, 288, 438-442, 449, 450, 453, 
456 

characteristics of, 267, 270-273, 275, 280, 281 
Reconstruction family, 212, 214-222, 260, 264, 

282,285 
Reconstruction hypothesis, 228-232, 244, 260, 267 

admissible, 245, 260 
generalized, 230, 232 
meaningful, 259 

Reconstruction principle of inductive inference, 279, 
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